• Title/Summary/Keyword: Brake specific fuel consumption

Search Result 97, Processing Time 0.03 seconds

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

A Study for Characteristics of Performances and Exhaust Emission on Blending Rates of Biodiesel Fuel in a Common-Rail Injection Diesel Engine (커먼레일 분사방식 디젤기관에서 바이오디젤유의 혼합율에 따른 성능 및 배기배출물 특성 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.5-10
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 30vol-%(max. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel.

  • PDF

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Performance and Emissions Characteristics of Small Engine at WOT Condition (전부하 상태에서 소형 엔진의 성능 및 배기특성)

  • Park, S.K.;Kim, B.G.;Oh, J.W.;Choi, Y.H.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.85-90
    • /
    • 2008
  • This paper presents the performance and emissions characteristics of a small spark-ignited gasoline engine. The engine used in this paper is a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc SI engine for brush cutter. For the performance of the engine, RPM, torque, and fuel consumption were measured and HC, CO, and NOx measured for the emissions according to the change of the dynamometer load at wide open throttle (WOT) position. The results showed that the excess air ratio decreased and torque increased with increasing loads, the torque and brake specific fuel consumption were the optimum driving condition at the 7000 rpm, HC and CO emissions increased with increasing loads and with an decrease in excess air ratio over 7000 rpm.

  • PDF

Hybrid Energy System Control Strategy Considering Fuel Consumption of Diesel Generator and State of Charge(SOC) of Battery (디젤 발전기 연료소모와 배터리의 충전상태를 고려한 분산 전원 시스템에서의 운전 전략)

  • Lee, Kyungkyu;GEDEON, NIYITEGEKA;Choi, Jaeho;Song, Yujin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.85-86
    • /
    • 2015
  • 본 논문은 디젤발전기, 태양광, 에너지 저장장치로 구성 된 마이크로 그리드 시스템에서의 효율적인 운전 제어 전략을 제안한다. BSFC(Brake Specific Fuel Consumption)맵을 기반으로 디젤발전기의 운전을 최적지점에서 일정하게 운전을 하고 부하의 변화는 에너지 저장장치의 충/방전으로 보상한다. 또한 에너지 저장장치의 안정적인 운전을 위해 에너지 저장장치의 SOC(State Of Charge)를 고려한 제어전략을 사용한다. SOC가 일정 범위를 벗어나게 되면 에너지 저장장치가 부하의 변동에 충분히 보상해주지 못하는 경우가 발생하기 때문에 이를 고려해 운전함으로써 부하에 신뢰성 있는 안정적인 전원을 공급할 수 있게 한다. 제안된 마이크로 그리드 운전 제어 전략은 PSiM 시뮬레이션을 통해 검증되었다.

  • PDF

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.

Emission characteristics of diesel engine by mixing LPG (디젤기관의 LPG 혼합에 의한 오염배출물 저감특성)

  • 장영준;전충환;이춘우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

Performance of 26cc Small Sized Two-Stroke SI Engines on Excess air factor at partial opened carburetor throttle (저개도 카뷰레터 쓰로틀에서의 26cc 소형원동기의 공기과잉율에 따른 성능특성)

  • Choi, Young-Ha;Kim, Byeong-Guk;Choi, Hyung-Mun;Yoon, Suck-Ju;Kim, Dong-Sun;Han, Jong-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.409-412
    • /
    • 2008
  • This paper presents the effects of excess air factors(0.84${\sim}$0.90) and opened throttle area ratios(AR=0.15${\sim}$0.25) on the emission and performance of a small spark-ignition gasoline engine. The engine used in this paper was a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc engine for brush cutter. The rpm, torque, fuel consumption and CO emission were measured under the four different excess air factors and three different opened area ratios conditions on the engine loads respectively. The results showed that the rpm was decreased and torque was increased at increasing load, the maximum power and minimum fuel consumption could be obtained critical rpm on each throttle opened area ratios and brake specific fuel consumption was decreased 13${\sim}$17%, CO emissions was decreased 21${\sim}$38% at excess air factor 0.90 than 0.84.

  • PDF

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.