• 제목/요약/키워드: Brake force

검색결과 280건 처리시간 0.025초

전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가 (A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake)

  • 백승구;오혁근;박춘수;김석원
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.581-588
    • /
    • 2020
  • 본 논문은 전기기계식제동장치(EMB : Electro Mechanical Brake, 이하 EMB)의 제동패드 마모발생에 따른 소프트웨어 기반의 마모보상방법의 적용 및 성능평가를 다루었다. EMB의 구동을 위해 사용된 모터는 3상 매입형 영구자석 동기전동기(IPMSM : Interior Permanent Magnet Synchronous Motor, 이하 IPMSM)가 사용되었다. EMB의 압부력(clamping force) 제어를 위해 위치제어기, 속도제어기 및 전류제어기가 적용되었으며, IPMSM의 출력 압부력 예측을 위해 모터의 거리별 압부력 실험을 통하여 힘 추정기(force estimator)를 1차 모델식으로 단순화 하였다. 제동패드에서 마모가 발생함에 따라 IPMSM에서 출력되는 토크전류의 크기가 감소하는 특성을 이용하여 기준 토크전류와의 비교를 통해 힘 추정기를 업데이트하는 방법으로 마모보상이 가능함을 보였다. 제동패드의 마모 후 최대 압부력 도달시간이 0.1초 이내로 증가하였으나, 마모패드 장착시에도 제동압부력은 마모 전 제동패드와 동일한 최대 기준 압부력을 만족하였으며, 최대압부력 도달시간의 경우 0.5초(기준값) 이내임을 실험으로 검증하였다. 소프트웨어 기반의 EMB 제동패드의 마모보상 방법은 철도차량의 출발 전 제동장치 점검시 테스트모드의 진입을 통하여 수행이 가능하다.

비접촉 와전류 제동기의 설계에 관한 연구 (A Study on the Design of Touch Free Eddy-Current Brake)

  • 하경호;홍정표;김규탁;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권2호
    • /
    • pp.77-83
    • /
    • 2000
  • This paper deals with the design of a touch free eddy-current brake for high speed transportation systems by using 2-dimensional Finite Element Method (2-D FEM). The eddy current brake systems have to equipped with maximum braking force and deceleration at the given volume or mass, high braking force at small rate, attraction forces as small as possible and stable construction. The parameters, such as the number of pole, electric ampere-turns and slot width have influence on these braking characteristics. For the magnet to satisfy above-mentioned performance in high speed, the braking performance according to variation of the parameters are analyzed by the 2-D FEM. In addition, the magnet stack width is determined from equivalent stack width that is calculated by solution of the Field with scalar potential. From these results, the magnet of optimized configuration with maximum braking force and minimum attraction force is designed by the process of detail design.

  • PDF

혼합제동기능을 이용한 유압제동 제어시스템 설계 (The Design of Hydraulic Brake Control System used on Blending Brake Function)

  • 이우동
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1809-1812
    • /
    • 2013
  • The bogie of monorail vehicles applies rubber wheel system not steel wheel system. In addition, The structure of the bogie is very complicated because vehicle operates on the elevated road and vehicle drives with wrapping the guide way. When the monorail vehicle applies air brake system, lower device of vehicle may be complex and some devices may be limited. On the other hand, hydraulic brake equipment is compact and not weighing. Braking force is also outstanding compared with air brake so the hydraulic brake equipment is suitable for monorail vehicle. Also urban transit system such as monorail, applies mixed system both friction brake and electric brake in order to save electric energy. But application case of hydraulic brake in the country is very rare because hydraulic brake have difficulty in satisfaction of control requirement and maintenance. Therefore, this study suggests ways to design hydraulic brake system with blending brake for monorail vehicle and applies the ways to future monorail.

유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석 (Stress and temperature analysis of a drum brake using FEM)

  • 함선균;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

양방향 로프 브레이크의 설계 및 해석 (Design and Analysis of Dual Rope Brake by Spring Type)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.319-324
    • /
    • 2006
  • 본 논문은 엘리베이터의 승객보호를 위한 안전장치에 관한 것으로 3차원 유한요소해석 코드인 ANSYS를 활용한 구조해석 결과를 설계의 기초 데이터로 사용하였으며, 기존의 제품과 다른 방식을 도입하여 승객과 설비를 보호할 수 있는 설계방법을 제시하고 제작을 통해 안전성을 향상 시켰다.

  • PDF

회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성 (Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

차륜 모델에 기초한 차량 ABS의 서보 제어기 설계 (Design of a Servo Controller for Antilock Brake Systems Based on the Automotive Tire Model)

  • 황이철
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.42-47
    • /
    • 2015
  • This paper studies on the design of a servo controller for an antilock brake system(ABS) based on the car tire model. First, a nonlinear differential equation of the car tire is constructed and its linearization model is obtained by Taylor's series. Second, a servo controller based on the mathematical model is analytically designed to obtain the maximum brake force, where the tire velocity and the slip ratio of car tire are respectively controlled to the given command values. Third, it is theoretically shown that the proposed control algorithm has good usefulness in ABS.

와전류 브레이크의 영구자석배열 최적설계 (Optimal Array Design of the Permanent Magnet in an Eddy Current Brake)

  • 최재석;유정훈
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.658-663
    • /
    • 2009
  • Eddy current is usually generated in the material with high conductivity by time-varying source such as AC current and also is induced by the moving source with relative velocity. The contactless magnetic brake makes use of the braking force from the eddy current generated by the moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of the eddy current brake system of a permanent magnet type where the design aim is to maximize the braking force. The analysis of brake systems is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method is applied for the sensitivity analysis.

미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구 (A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System)

  • 송창섭;양해정
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF