• Title/Summary/Keyword: Brake disk

Search Result 220, Processing Time 0.024 seconds

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis (회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구)

  • Ryu, Mi-Ra;Byoun, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.

Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc (원주가압형 브레이크 디스크의 열-구조 연성해석)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

Development of a Solenoid Control Technique for the Suppression of Brake System Noise and Vibrations of the Elevator Traction Machine (엘리베이터 권상기 브레이크 시스템 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발)

  • Yang, Dong-Ho;Kim, Ki-Young;Heo, Seok;Kwak, Moon-K.;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.65-71
    • /
    • 2012
  • This paper is concerned with the suppression of brake system noise and vibrations of the elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We develop the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the brake system vibrations. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

  • PDF

Development of a Solenoid Control Technique for the Suppression of Noise and Vibrations of the Brake System of Elevator Traction Machine (엘리베이터 권상기 브레이크 시스템의 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발)

  • Yang, Dong-Ho;Kim, Ki-Young;Heo, Seok;Kwak, Moon-K.;Lee, Jae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.451-458
    • /
    • 2012
  • This paper is concerned with the suppression of noise and vibrations of the brake system of elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We developed the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the vibrations of brake system. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

Hydraulic Pumps Driven by Multilayered Piezoelectric Elements -Mathematical Model and Application to Brake Device -

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, we present a mathematical model of the piezoelectric pump and its application to the automobile brake system. The piezoelectric pump consists of a multi-layered piezoelectric element a diaphragm, pumping values, resonant pipes and accumulators, and the maximum pumping power of 62W nab obtained in the previous experiments by using the piezoelectric element of 22mm diameter and 55.5mm length. A detailed mathematical model of the pump is derived here by considering the compressibility of the working oil, nonlinear characteristics of piezoelectric element, the time delay of pumping values' action and be on. The validity of the model is illustrated by comparing the experimental data and the simulation results. Using the mathematical model of the piezoelectric pump, a brake system for automobile disk brake is also simulated in this paper. The brake system consists of a piezoelectric pump as a power source, calipers and its piston to generate brake force, and a three position solenoid value to change the brake situation. It is shown that 15mm/sec of piston speed and 20kN of piston force are obtained by using the piezoelectric element of 33mm diameter and 55.5mm length.

  • PDF

Braking Characteristics of Wet-type Multiple Disc Brakes on Friction Materials (마찰재에 따른 휠굴삭기용 습식 다판 디스크 브레이크의 제동특성)

  • Bae, Myung-Ho;Cho, Yon-Sang
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.381-386
    • /
    • 2009
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wettype multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are dvanced in durability and braking power, and can be designed compactly. Thus, we adesigned and made wettype multiple disk brakes of axle for the wheel excavator to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 3 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient on temperature of oil and applied pressure.

A Study on Vibration mode Shape Measurement of Disk brake by Using Time-Averaged ESPI (시간평균 ESPI를 이용한 디스크 브레이크의 진동 모드 측정에 관한 연구)

  • 김동우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.79-86
    • /
    • 1999
  • Electronic Speckle Pattern Interferometry(ESPI) is a powerful tool to measure the vibration mode shape and resonance frequency for modal analysis. As for ESPI this method is very suited for full-field measurement of objects in industrial areas because the interferograms are recorded with a video camera and evaluated in real-time with a computer. In this study We performed experiments at the same constraint conditions as disk brake of the practical vehicle as far as possible and obtained the resonance frequencies and vibration mode shapes by using time-averaged ESPI at once. Finally to assure the expetimental results by time-averaged ESPI we also compare those with results obtained by Laser Doppler Vibrometer and obtained good agreement.

  • PDF

A Study on the Process Sequence Design in Metal Forming including Deep Drawing (디프드로잉이 포함된 소성가공의 공정설계에 관한 연구)

  • 황병복;임중연;이호용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF

Study on Fatigue Fracture at Disk Brake (원판브레이크에서의 피로파괴연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.201-206
    • /
    • 2009
  • This study investigates fatigue life and possibility damaged at disk brake of automobile by the simulation of fatigue analysis. Among nonconstant fatigue loads, the case of 'SAE Bracket History' which is the severest at the variation of load tends to be most unstable. The case of 'Sample History' which becomes slower at the variation of load tends to be most stable. The value of maximum relative damage in case of 'SAE Bracket History' is occurred near the average stress '0' and this case can be shown to have the possibility to affect more damage than another case. As the result of this study is applied to automobile parts with non constant loads, durability can be improved during drive by preventing any damage.