• Title/Summary/Keyword: Brain-based education

Search Result 189, Processing Time 0.025 seconds

Brain activation pattern and functional connectivity network during classification on the living organisms

  • Byeon, Jung-Ho;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.7
    • /
    • pp.751-758
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during classification on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out classification. The network model was consisting of six nodes (ROIs) and its fourteen connections. These results suggested the notion that the activation and connections of these regions mean that classification is consist of two sub-network systems (top-down and bottom-up related) and it functioning reciprocally. These results enable the examination of the scientific classification process from the cognitive neuroscience perspective, and may be used as basic materials for developing a teaching-learning program for scientific classification such as brain-based science education curriculum in the science classrooms.

A Study on Activity in Reading of Men in terms of Brain Science

  • Jeong, Dae Keun
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.9 no.1
    • /
    • pp.57-79
    • /
    • 2019
  • This study attempts to seek a solution, in terms of brain science, to stimulate reading activities of men to whom no attention has been given from the field of reading. In order to do so, brain pattern, reading tendency, reading preference, reading effectiveness and influence of reading were analyzed. As a result of the analysis, first, it showed that respondents' characteristics did not affect brain patterns, but school and social influences on reading were found to affect brain patterns. Second, reading propensity according to gender was observed to be different in terms of personal health, personal self - esteem, and cultural artistry. On the other hand, reading effectiveness was found to be different in terms of reading engagement and the willingness to continue reading whereas reading propensity according to the brain pattern was different in books related to humor and family matters. Third, reading satisfaction, reading engagement and willingness to continue reading all were observed to affect the reading activities of men. Suggesting measures to stimulate reading activities of men based on such findings, first, implementing dynamic reading education programs and finding reading models for men are needed. Second, when selecting books for reading program operations, books should be recommended according to gender rather than being selected en bloc by libraries. Third, since reading education at home shows high influences on both male and male-type brain pattern, the starting point of reading education should be made at homes. In particular, fathers, who can become a role model for men, need a reading role model, and reading education programs for fathers are also required.

A Review of Domestic Research for the Brain-science Based Learning According to Age and Comparison and Consideration of Learning Methodology of Korean Medicine According to Age (뇌과학에 기반한 연령별 학습법과 연령별 한의학적 학습방법론 비교고찰)

  • Cho, A-Ram;Park, So-Im;Kang, Da-Hyun;Sue, Joo-Hee
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.4
    • /
    • pp.333-350
    • /
    • 2014
  • Objectives: The purpose of this study was to research learning based on brain science and the learning methodology of Korean Medicine according to disparity of age. Through this, the study aimed to provide a guideline to related Korean Medicine treatments as well as the common nurturing/educational institutions. Methods: All journals and dissertations on brain science based learning methods studied in Korea to date that could be found in the National Assembly Library and the RISS were implemented in the analysis. The terminology used for search was as follows: 1st search, 'Brain'; 2nd search, 'Learning', 'Education'; 3rd search, 'Baby, 'Infant', 'Child'. For the learning methodology of Korean Medicine according to disparity of age, the related contents were extracted from Donguibogam and Liuyi, Sasang constitutional medicine. Results: A total of 30 studies, were collected as data. In the baby stage, the development and myelination of brain neurons are accelerated by experience and learning, highly influenced by social, cognitive and emotional movement. In infancy, the frontal lobe actively develops, so education for development of the prefrontal cortex is suggested. The brain of the infant at this stage can be developed by arts and physical education. In the child stage, the parietal and temporal lobe develop actively. Thus, programs to stimulate brain activity including brain respiration would be helpful in enhancing learning ability, concentration, etc. As evidence for learning and nurturing methodology according to disparity of age from Korean Medicine prospective, the following are listed: Location and time for sexual intercourse before pregnancy, stabilization during pregnancy, baby nurturing methods for nurturing from Donguibogam. Also Liuyi and Sasanag constitutional medicine can be the learning methodology according to disparity of age. And there are acupuncture points on each head section according to age in Donguibogam. Conclusions: Studies on 'brain-science based learning' are continuously being conducted. Based on these studies, diverse new brain-science based learning will be developed in the future. There is also a need to develop the learning methodology of Korean Medicine according to disparity of age in a more systematic and diverse way.

The role of positive emotion in education (교육에서의 긍정적 감성의 역할)

  • Kim, Eun-Joo;Park, Hae-Jeong;Kim, Joo-Han
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.225-234
    • /
    • 2010
  • To investigate the role of positive emotion in education, we have reviewed the previous studies on positive emotion, learning and motivation. In the present study, we examined the definition of positive emotion, and influences of positive emotion on cognition, creativity, social relationship, psychological resource such as life satisfaction, and interactive relationship among positive emotion, motivation and learning. To investigate the role of positive emotion on motivation and learning more scientifically, we examined the recent results of neuroscience. In other words, we have reviewed diverse research on positive emotion, learning and motivation based on brain-based learning. We also examined the research of autonomy-supportive environment as the specific example of improving positive emotion. As one of the most effective methods for emotional education, we discussed brain-based learning, the new research field. As the future prospects, we discussed the implications, possibilities and limitations of brain-based learning.

  • PDF

A Meta-Analytic Review of Effects of Brain-Based Education (뇌기반 교육의 효과에 대한 메타분석)

  • Jang, Hwan Young;Jang, Bong Seok
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • This study aims to investigate effects of brain-based learning. 27 primary studies were selected through rigorous search process and analyzed through meta-analytic methods. Research findings are as follows. First, the total effect size was .67. Second, the effect of dependent variables was academic achievement, cognitive domain, and affective domain in order. Third, with respect to types of cognitive domain, the effect was self-regulation, creativity, competence, communication, and research ability in order. Fourth, the effect of affective domains was sociality, learning interest, and subject attitude in order. Fifth, regarding development of cognitive ability, the effect size was combined, brain training, learning environments, and right brain activities in order. Sixth, the effect of learning activities was memory improvement and attention enhancement in order.

A Brain-Based Approach to Science Teaching and Learning: A Successive Integration Model of the Structures and Functions of Human Brain and the Affective, Psychomotor, and Cognitive Domains of School Science (뇌 기능에 기초한 과학 교수학습: 뇌기능과 학교 과학의 정의적$\cdot$심체적$\cdot$인지적 영역의 연계적 통합 모형)

  • Lim Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.1
    • /
    • pp.86-101
    • /
    • 2005
  • In this study, a brain-basrd model for science teaching and learning was developed based on the natural processes which human acquire knowledge about a natural object or on event, the major domains of science educational objectives of the national curriculum, and the human brain's organizational patterns and functions. In the model, each educational objective domain is related to the brain regions as follows: The affective domain is related to the limbic system, especially amygdala of human brain which is involved in emotions, the psychomotor domain is related to the occipital lobes of human brain which perform visual processing, temporal lobes which perform functions of language generating and understandng, and parietal lobes which receive and process sensory information and execute motor activities of body, and the cognitive domain is related to the frontal and prefrontal lobes which are involved in think-ing, planning, judging, and problem solving. The model is a kind of procedural model which proceed fiom affective domain to psychomotor domain, and to cognitive domain of science educational objective system, and emphasize the order of each step and authentic assessment at each step. The model has both properties of circularity and network of activities. At classrooms, the model can be used as various forms according to subjects and student characteristics. STS themes can be appropriately covered by the model.

  • PDF

A Study on the Brain Scientific Mechanism of Drawing Education - Focusing on the Animated Drawing (드로잉 교육의 뇌과학적 기제 연구 - 애니메이션 드로잉을 중심으로)

  • Park, Sung Won
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.217-236
    • /
    • 2014
  • This study is a literature analytical process for studying the drawing teaching methods considering the professional characteristics of animation and a principle analytical process for studying the perspective that when teaching methods that consider the function, learning and creative mechanisms of the brain are applied, the animation drawing ability will be effectively increased. In recent years, as an alternative discussion on the educational method of each field, study results applied with brain-based learning principles are being presented. This is not only being applied and implemented for art and drawing education but as overall educational alternatives. On the other hand, animation drawing requires artistic literacy and at the same time requires comprehensive teaching methods that can train the structural knowledge, cognitive sensation and communication method but such professional teaching methods are insufficient. Therefore, the principle of effective education is seen through the brain mechanism and the principle of demonstrating the creativity and learning by the brain is analyzed. In addition, through the fundamental relationship on the picture drawing and the function of the brain, the relationship of the drawing and the brain is identified. As a result, not only for the left brain that observes the cognitive information which can draw the structure and shapes but the right brain which is directly related to the drawing should be developed, but in order to express the creativity, teaching methods that can understand the mechanism of comprehensive brain where physical and psychological factors are expressed should be also developed. It is because the animation drawing education is teaching the methods for demonstrating the characteristics of artistic creativity required for the drawing ability. This process will not only be a foundation for identifying the difference against the previous animation drawing teaching methods, and the brain-based principles will be selected as the core strategic definition for designing the strategy and methodological model of future education.

Brain Activities by the Generating-Process-Types of Scientific Emotion in the Pre-Service Teachers' Hypothesis Generation About Biological Phenomena: An fMRI Study (예비교사들의 생물학 가설 생성에서 나타나는 과학적 감성의 생성 과정 유형별 두뇌 활성화에 대한 fMRI 연구)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.568-580
    • /
    • 2006
  • The purpose of this study was to investigate the brain activities by 4-types of Generating Process of Scientific Emotion (GPSE) in the hypothesis-generating biological phenomena by using fMRI. Four-types of GPSE were involved in the Basic Generating Process (BGP), Retrospective Generating Process (RGP), Cognitive Generating Process (CGP) and Attributive Generating Process (AGP). For this study, we made an experimental design capable of validating the 4-types of generating process (e.g. BGP, RGP, CGP and AGP), and then measured BOLD signals of 10 pre-service teachers' brain activities by 3.0T fMRI system. Subjects were 10 healthy females majoring in biology education. As a result, there were clear differences among 4-types of GPSE. Brain areas activated by BGP were at right occipital lobe (BA 17), at left thalamus and left parahippocampal gyrus, while in the case of RGP, at left superior parietal lobe (BA 8, 9), at left pulvinar and left globus pallidus were activated. Brain areas activated by CGP were the right posterior cingulate and left medial frontal gyrus (BA 6). In the case of AGP, the most distinctively activated brain areas were the right medial frontal gyrus (BA 8) and left inferior parietal lobule (BA 40). These results would mean that each of the 4-types of GPSE has a specific neural networks in the brain, respectively. Furthermore, it would provide the basis of brain-based learning in science education.

Brain Activation in Generating Hypothesis about Biological Phenomena and the Processing of Mental Arithmetic: An fMRI Study (생명 현상에 대한 과학적 가설 생성과 수리 연산에서 나타나는 두뇌 활성: fMRI 연구)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • The purpose of this study is to investigate brain activity both during the processing of a scientific hypothesis about biological phenomena and mental arithmetic using 3.0T fMRI at the KAIST. For this study, 16 healthy male subjects participated voluntarily. Each subject's functional brain images by performing a scientific hypothesis task and a mental arithmetic task for 684 seconds were measured. After the fMRI measuring, verbal reports were collected to ensure the reliability of brain image data. This data, which were found to be adequate based on the results of analyzing verbal reports, were all included in the statistical analysis. When the data were statistically analyzed using SPM2 software, the scientific hypothesis generating process was found to have independent brain network different from the mental arithmetic process. In the scientific hypothesis process, we can infer that there is the process of encoding semantic derived from the fusiform gyrus through question-situation analysis in the pre-frontal lobe. In the mental arithmetic process, the area combining pre-frontal and parietal lobes plays an important role, and the parietal lobe is considered to be involved in skillfulness. In addition, the scientific hypothesis process was found to be accompanied by scientific emotion. These results enabled the examination of the scientific hypothesis process from the cognitive neuroscience perspective, and may be used as basic materials for developing a learning program for scientific hypothesis generation. In addition, this program can be proposed as a model of scientific brain-based learning.

Effects of a Brain-Based Evolutionary Approach Using Rapid-cycling Brassica rapa on Elementary School Students' Interests in Life Cycle of Plants ('식물의 한살이' 단원에서 속성배추를 활용한 뇌기반 진화적 접근법이 초등학생의 흥미에 미치는 영향)

  • Kim, So-Young;Lim, Chae-Seong;Kim, Sung-Ha;Hong, Juneuy
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.336-347
    • /
    • 2016
  • The purpose of this study is to analyze the effects of elementary science instruction applying a Brain-Based Evolutionary (ABC-DEF) approach using Rapid-cycling Brassica rapa (RcBr) on the interests of elementary school students. For this study, two elementary school classes in Seoul and one elementary school class in Gyeonggi-do were selected. Comparison group received instruction using textbook and teacher's guidebook. A class taught using only brain-based evolutionary approach is experimental group A, and a class taught through brain-based evolutionary approach using RcBr is experimental group B. In order to analyze the quantitative differences about the interests of students, three kinds of test were administered to the students: 'Applied Unit-Related Interests', 'Follow-up Interests' and 'Interests in the observation material'. To get more information, qualitative data such as portfolios and interviews were analyzed. The major findings are as follows. First, for the test of applied unit-related interests, a statistically significant difference was found between comparison group and experimental group A, and between comparison group and experimental group B. As the results of interviews, the students have shown that the intensified exploration activities on plant in Brain-Based Evolutionary approach applied to experimental groups A and B had a positive effect. Second, for test of follow-up interests, we classified the students' follow-up interests into three types: extended-developed-deepened (EDD) type, simply expanded-maintained (SEM) type, and stopped or decreased (SD) type. Both experimental group A and experimental group B showed the highest percentage of EDD. Also, observation journal applying the evolutionary process (DEF) showed a positive effect on the students' interest. Comparison group showed the highest percentage of SEM. Third, for test of applied interests in the observation material, a statistically significant difference was found between comparison group and experimental group A, and comparison group and experimental group B. Experimental group B using RcBr showed the highest average score, while experimental group A showed a higher score than comparison group. Based on these findings, educational implications of Brain-Based Evolutionary approach and using RcBr are discussed.