Kim, Eung-Soo;Cho, Han-Bum;Yang, Eun-Joo;Eum, Tae-Wan
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.260-263
/
2003
EEC is an electrical signal, which occurs during information processing in the brain. These EEG signals has been used clinically, but nowadays we are mainly studying Brain-Computer Interface(BCI) such as interfacing with a computer through the EEG controlling the machine through the EEG The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. A BCI has to perform two tasks, the parameter estimation task, which attemps to describe the properties of the EEG signal and the classification task, which separates the different EEC patterns based on the estimated parameters. First, we have to do parameter estimation of EEG to embody BCI system. It is important to improve performance of classifier, But, It is not easy to do parameter estimation by reason of EEG is sensitivity and undergo various influences. Therefore, this research should do parameter estimation and classification of the EEG to use various analysis algorithm.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.11
/
pp.1022-1028
/
2013
It is well knowns that based on the CSP (Common Spatial Pattern) algorithm, the linear projection of an EEG (Electroencephalography) signal can be made to spaces that optimize the discriminant between two patterns. Sharing disadvantages from linear time invariant systems, CSP suffers from the non-stationary nature of EEGs causing the performance of the classification in a BCI (Brain-Computer Interface) system to drop significantly when comparing the training data and test data. The author has suggested a simple idea based on the parallel model of CSP filters to improve the performance of BCI systems. The model was tested with a simple CSP algorithm (without any elaborate regularizing methods) and a perceptron learning algorithm as a classifier to determine the improvement of the system. The simulation showed that the parallel model could improve classification performance by over 10% compared to conventional CSP methods.
Recently brainwaves are utilized diversely in the field of medicine, entertainment, education and so on. In the case of medicine, brainwaves are analyzed to estimate patients' diseases. However, the applications for entertainments usually utilize brainwaves as control signal without figuring out the characters of the brainwaves. Given that users' brainwaves are different each other, a normalization method is essential. The traditional brainwave normalization approaches utilize normal distribution. However, those approaches assume that brainwaves are collected enough to conduct normal distribution. When the few amounts of brainwaves are measured, the accuracy of the control signal based on the measured brainwaves becomes low. In this paper, we propose a normalization framework of BCI-based facial interfaces for novel volume controllers, which can normalizes the few amounts of brainwaves and then generates the control signals of BCI-based facial interfaces. In the experiments, two subjects were involved to validate the proposed framework and then the normalization processes were introduced.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.46
no.2
/
pp.41-46
/
2009
This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measured EEG signals. As a result, SMR wave, Mid-Bata wave, $\Theta$ wave classified. We extracted the concentration index by adapting concentration extraction algorithm. This concentration uldex was transferred into logo automobile device by wireless module and applied for BCI application.
Journal of the Institute of Convergence Signal Processing
/
v.10
no.1
/
pp.40-48
/
2009
Leading of the computer, IT technology has make great strides. As a information-industry-community was highly developed, user's needs to convenience about intelligence and humanization of interface is being increase today. Nowadays, researches with are related to BCI are progress put the application-technology development first in importance eliminating research about fountainhead technology with DB construction. These problems are due to a BCI-related research studies have not overcome the initial level, and not toward a systematic study. Brain wave are collected from subjects is a signal that the signal is appropriate and necessary in the experiment is difficult to distinguish. In addition, brain wave that it's not necessary to collect the experiment, serious eyes flicker, facial and body movements of an EMG and electrodes attached to the state, noise, vibration, etc. It is hard to collect accurate brain wave was caused by mixing disturbance wave in experiment on the environment. This movement, and the experiment of subject impact on the environment due to the mixing disturbance wave can cause that lowering cognitive and decline of efficiency when embodied BCI system. Therefore, in this paper, we propose an accurate and efficient brain-wave DB building system that more exactness and cognitive basis studies when embodied BCI system with brain-wave. For the minimize about brain wave DB with mixing disturbance, we propose a DB building method using an automatic control and prevent unnecessary action, put to use the subjects face tracking.
Journal of the Institute of Convergence Signal Processing
/
v.11
no.2
/
pp.112-124
/
2010
Studies that can find resolutions to problems of subjective psychiatric analysis must be performed and indeed they are in the process. However there still lies many problems in researches of mentality examination, which should be the foundation of finding potential resolutions. One of the biggest problems in the conventional system is that there are many different opinions by psychiatrists depending on their educations and experiences. There is no objective standard on the subjects and there is no effective psychiatric analysis method. Also, the characteristic of such examinations is that it cannot be applied to disabilities, foreigners and infants alyce the examination is ch examinconversation. The objective of this atudy is to standardize TAT(Thematic Apperception Test)analysiBallken index method so that subjective data from the examination can be excluded and the examination thus maklysithe examination objectified. Furthermore, objective result and patients' brain wave pattern is read with BCI(Brain Computer Interface) ch exaTherenvironment to Alsare it to brain wave characteristics vectors to reate brain-wave characteristics vector DB. Therefore, such DB can be utilize durlysithe examination and diagnosis to reate objective examination method and standardized diagnosis system. Thus, mentality examination can be performed only with brain-wave scans with BCI based TAT system.
In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.373-376
/
2004
최근에 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 뇌-컴퓨터 인터페이스BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다. 이러한 BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 본 논문에서는 움직임과 관련 있는 10~12Hz의 mu파 영역에서의 ERD/ERS를 계산하였고, 그 결과 왼쪽과 오른쪽 손의 움직임을 상상할 때에 운동과 관련된 기능이 집중되어 있는 일차운동영역(primary motor area)의 mu파에서 ERD/ERS의 차이가 나타남을 발견하였다 또한, RLS방법을 사용한 Adaptive Autoregressive Model 계수의 특징을 추출을 하였으며, 이를 신경망으로 학습시켜 인식률을 비교하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.151-154
/
2008
본 논문은 Bayesian Networks를 이용해서 EEG 신호를 분석해서 사람의 감정을 분석하는 방법을 제안하였다. 현제 연구자들은 Electroencephalogram(EEG) 신호를 기반으로 사람의 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. 기존에는 간질이나 발작 등을 의학 분야와 사람의 정서에 따라 뇌파분석을 하는 심리학의 영역에서 연구가 되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스를 통한 여러 가지 공학적인 접근이 이루어지고 있다. 본 논문에서는 사람의 감정에 따라 Brain-Computer Interface (BCI)를 통해서 EEG 신호를 분석하고 잡음을 제거해서 보다 정확한 신호를 추출한 다음 각각의 주파수 영역으로 분류를 하였다. 분류된 값들은 Bayesian Networks를 이용해서 피 실험자가 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 확률 값에 의해서 피 실험자가 어떠한 감정인지를 인식하게 되는 것이다.
This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP-100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measure EEG signal. As a result, ${\alpha}$ wave, ${\beta}$ wave, ${\theta}$ wave and ${\delta}$ wave were classified. we extracted the concentration index by adapting concentration extraction algorithm. This concentration index was transferred into lego automobile device by wireless module and applied for BCI application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.