• Title/Summary/Keyword: Brain magnetic resonance imaging (MRI)

Search Result 516, Processing Time 0.022 seconds

A Case of Poliomyelitis-like Syndrome with Typical Abnormalities in MRI (자기공명영상에서 전형적인 이상 소견을 보인 소아마비양 증후군 환자 1예)

  • Kim, Seok-Il;Koo, Ja-Seong;Yoon, Doo-Sang;Kim, Byung-Kun;Bae, Hee-Joon
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.56-59
    • /
    • 2002
  • A 28-year-old man presented with headache, fever, and myalgia. Subsequently, rapidly progressive quadriplegia with areflexia developed. CSF examination revealed moderate pleocytosis and protein elevation. MRI of brain and spinal cord showed hyperintense lesions on T2-weighted image at midbrain and ventral horns along the whole spinal cord. Serial serologic examinations of CSF for Epstein-Barr virus and cytomegalovirus were negative. Culture and neutralization tests of stool and CSF for enterovirus were negative. Although the etiologic pathogen was not identified, we diagnosed him as poliomyelitis-like syndrome by clinical features and findings of MRI.

  • PDF

Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images

  • Madusanka, Nuwan;Choi, Yu Yong;Choi, Kyu Yeong;Lee, Kun Ho;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The brain magnetic resonance images (MRI) is an important imaging biomarker in Alzheimer's disease (AD) as the cerebral atrophy has been shown to strongly associate with cognitive symptoms. The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlates with the decline of cognitive functions in neurodegenerative diseases. During the past decades several methods have been developed for quantifying the disease related atrophy of hippocampus from MRI. Special effort has been dedicated to separate AD and mild cognitive impairment (MCI) related modifications from normal aging for the purpose of early detection and prediction. We trained a multi-class support vector machine (SVM) with probabilistic outputs on a sample (n = 58) of 20 normal controls (NC), 19 individuals with MCI, and 19 individuals with AD. The model was then applied to the cross-validation of same data set which no labels were known and the predictions. This study presents data on the association between MRI quantitative parameters of hippocampus and its quantitative structural changes examination use on the classification of the diseases.

Acupuncture stimulation for motor cortex activities: Evidence from 3T functional MRI study

  • 최보영;전신수;유승식;최기순;박상동;임은철;정성택;이형구;서태석
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.75-75
    • /
    • 2003
  • Purpose: To investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. Methods: The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was performed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB 34 and sham points. This study investigates the activation of the motor cortex elicited by a soft and an intensified stimulation of GB 34. Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture. Results: Group analysis from seven individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. Conclusions: The present study shows that acupuncture fMRI study can be safely conducted in 3T MRI environment, and acupuncture stimulation in GB34 modulates the cortical activities of the soma- to motor area in human. The present findings may shed light on the CNS mechanism of motor function by acupuncture and form a basis for future investigations of motor modulation circuits in the stroke patients. Acknowledgement: This study was supported by a grant of the Mid and Long Term Nuclear RID Plan Program, Ministry of Science and Technology, Republic of Korea.

  • PDF

Cerebellar Activation Related to Various Tasks Using fMRI (다양한 임무 부여시 기능적 자기공명영상에서 관찰된 소뇌의 활성화)

  • Hwang, Seung-Bae;Kwak, Hyo-Sung;Lee, Sang-Yong;Jin, Gong-Yong;Han, Young-Min;Kim, Young-Kon;Chung, Gyung-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Purpose : Although it's been known for half a century that unique structures have evolved in the cerebellum and they then became greatly enlarged in the human brain, the function of these structures still remains unknown. The purpose of this study was to assess cerebellar activation during motor, sensory, word generation, listening comprehension, and working memory tasks with using functional magnetic resonance imaging (fMRI). Materials and Methods : Eleven healthy right-handed subjects (Male: female, 6:5, mean age: 27.4years) were imaged on a Siemens 1.5T scanner. Whole brain functional maps were acquired using BOLD EPI sequences in the axial plane. Each paradigm consisted of five epochs of activation vs. the control condition. The activation tasks consisted of left finger complex movement, sensory stimulation of the left hand, word generation, listening comprehension, and working memory tasks. The reference function was a boxcar waveform. The activation maps were thresholded at p = 0.001. SPM 5 evaluated the activated areas and responses within the cerebellum. Results : Cerebellar activation was observed on motor task, word generation task, and working memory task. There were 949 activated areas and the mean fitted and adjusted response was 0.68 during the motor task. There were 319 activated areas and the mean fitted and adjusted response was 0.15 during the word generation task. There were 330 activated areas and the mean fitted and adjusted response was 0.26 during the working memory task. Conclusion : Our results suggest that the cerebellum is involved in a variety of functional tasks, including motor, word generation, and working memory tasks. However, during the motor task, the cerebellum showed a large activated area and a high response. Cerebellar function can be evaluated by fMRI.

  • PDF

Leptomeningeal Dissemination of a Low-Grade Brainstem Glioma without Local Recurrence

  • Moon, Jung-Ho;Jung, Tae-Young;Jung, Shin;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.2
    • /
    • pp.109-112
    • /
    • 2012
  • It is rare for low-grade gliomas to disseminate to the leptomeninges. However, low-grade gliomas with dissemination to the leptomeninges have been occasionally reported in children, and have generally been associated with local recurrence. A 16-year-old boy sought evaluation for diplopia and gait disturbance. A brain magnetic resonance imaging (MRI) revealed pontine mass, which was proved to be fibrillary astrocytoma on biopsy, later. Radiation therapy (5400 cGy) was given and the patient's symptoms were improved. He was followed-up radiologically for brain lesion. Seven months after diagnosis he complained of back pain and gait disturbance. A brain MRI showed a newly-developed lesion at the left cerebellopontine angle without an interval change in the primary lesion. A spinal MRI demonstrated leptomeningeal dissemination of the entire spine. Radiation therapy (3750 cGy) to the spine, and adjuvant chemotherapy with a carboplatin plus vincristine regimen were administered. However, he had a progressive course with tumoral hemorrhage and expired 13 months after diagnosis. We report an unusual case of a low-grade brainstem glioma with spinal dissemination, but without local recurrence, and a progressive course associated with hemorrhage.

Peritumoral Brain Edema in Meningiomas: Correlation of Radiologic and Pathologic Features

  • Kim, Byung-Won;Kim, Min-Su;Kim, Sang-Woo;Chang, Chul-Hoon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • Objective: The primary objective of this study was to perform a retrospective evaluation of the radiological and pathological features influencing the formation of peritumoral brain edema (PTBE) in meningiomas. Methods: The magnetic resonance imaging (MRI) and pathology data for 86 patients with meningiomas, who underwent surgery at our institution between September 2003 and March 2009, were examined. We evaluated predictive factors related to peritumoral edema including gender, tumor volume, shape of tumor margin, presence of arachnoid plane, the signal intensity (SI) of the tumor in T2-weighted image (T2WI), the WHO histological classification (GI, GII/GIII) and the Ki-67 antigen labeling index (LI). The edema-tumor volume ratio was calculated as the edema index (EI) and was used to evaluate peritumoral edema. Results: Gender (p=0.809) and pathological finding (p=0.084) were not statistically significantly associated with peritumoral edema by univariate analysis. Tumor volume was not correlated with the volume of peritumoral edema. By univariate analysis, three radiological features, and one pathological finding, were associated with PTBE of statistical significance: shape of tumor margin (p=0.001), presence of arachnoid plane (p=0.001), high SI of tumor in T2WI (p=0.001), and Ki-67 antigen LI (p=0.049). These results suggest that irregular tumor margins, hyperintensity in T2WI, absence of arachnoid plane on the MRI, and high Ki-67 LI can be important predictive factors that influence the formation of peritumoral edema in meningiomas. By multivariate analysis, only SI of the tumor in T2WI was statistically significantly associated with peritumoral edema. Conclusion: Results of this study indicate that irregular tumor margin, hyperintensity in T2WI, absence of arachnoid plane on the MRI, and high Ki-67 LI may be important predictive factors influencing the formation of peritumoral edema in meningiomas.

Visual Evoked Potentials in Retrochiasmal Lesion; Correlation with Neuroimaging Study (시각유발전위 검사상 후-시신경교차부위병변을 보인 환자들의 뇌 영상 결과와의 연관성)

  • Kim, Sung Hun;Cho, Yong-Jin;Kim, Ho-Jin;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • Background and Objective : Visual evoked potentials(VEPs) is considered to be a reliable diagnostic procedure for examining patients with anterior visual pathways. Some abnormalities in the recordings on monocular stimulation have been said to indicate retrochiasmal lesion, but less consistent results have been reported. This study is to evaluate the positive predictability of VEP for the detection of retrochiasmal lesion. Methods : We reviewed VEPs that could be interpreted as indicative of a retrochiasmal lesions, based on amplitude or latency asymmetry recorded on the left(O1) and right(O2) occipital regions. Bilateral absent VEPs on both recording(O1 and O2) without evidence of prechiasmal lesion were included. During 5 years, we identified 31 patients who met the above criteria and who had undergone magnetic resonance imaging(MRI) of brain(one patient underwent computerized tomography). Twenty three patients underwent pattern reversal VEPs and others underwent flash goggle VEPs. Results : Brain imagings were abnormal in 29 and were normal in 2. Of the 29 abnormal scans, lesions in posterior visual pathway were detected in 21 scans(predictive value=68%). The predictive value was not significantly different between flash goggle VEP(75%) and pattern reversal VEP(68%). The predictive value was higher in patient with visual field defect(100%) than those without visual field defect(25%). The pathologic nature of lesion also showed close relations to the predictive value. VEPs is usually paradoxically lateralized(78%), but not in all patients. Conclusion : VEPs abnormalities suggesting retrochiasmal lesion were usually corresponded with brain MRI findings. Diagnostic reliability could be increased when considering the visual field defect and nature of lesion. Therefore, the authors suggest that VEPs studies could be useful in evaluating the patients with the retrochismal lesion.

  • PDF

An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders (늘어난 혈관주위공간: 노화와 신경계질환에서의 임상적의의와 영상의 역할)

  • Younghee Yim;Won-Jin Moon
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.538-558
    • /
    • 2022
  • The perivascular space (PVS) of the brain, also known as Virchow-Robin space, consists of cerebrospinal fluid and connective tissues bordered by astrocyte endfeet. The PVS, in a word, is the route over the arterioles, capillaries, and venules where the substances can move. Although the PVS was identified and described first in the literature approximately over 150 years ago, its importance has been highlighted recently after the function of the waste clearing system of the interstitial fluid and wastes was revealed. The PVS is known to be a microscopic structure detected using T2-weighted brain MRI as dot-like hyperintensity lesions when enlarged. Although until recently regarded as normal with no clinical consequence and ignored in many circumstances, several studies have argued the association of an enlarged PVS with neurodegenerative or other diseases. Many questions and unknown facts about this structure still exist; we can only assume that the normal PVS functions are crucial in keeping the brain healthy. In this review, we covered the history, anatomy, pathophysiology, and MRI findings of the PVS; finally, we briefly touched upon the recent trials to better visualize the PVS by providing a glimpse of the brain fluid dynamics and clinical importance of the PVS.

A Narrative Literature Review on the Neural Substrates of Cognitive Reserve: Focusing on the Resting-state Functional Magnetic Resonance Imaging Studies (인지예비능의 신경적 기질에 대한 서술적 문헌고찰 연구 : 휴지기 기능적 자기공명영상 연구를 중심으로)

  • Hyeonsang Shin;Woohyun Seong;Bo-in Kwon;Yeonju Woo;Joo-Hee Kim;Dong Hyuk Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Cognitive reserve (CR) is a concept that can explain the discrepancies between the pathologic burden of the disease and clinical manifestations. It refers to the individual susceptibility to age-related brain changes and pathologies related to Alzheimer's disease, thus recognized as a factor affecting the trajectories of the disease. The purpose of this study was to explore the current states of clinical studies on neural substrates of CR in Alzheimer's disease using functional magnetic resonance imaging. We searched for clinical studies on CR using fMRI in the Pubmed, Cochrane library, RISS, KISS and ScienceON on August 14, 2023. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of CR. Total thirty-four studies were included in this study. As surrogate markers of CR, not only education and occupational complexity, but also composite score and questionnaire-based method, which cover various areas of life, were mainly used. The most utilized methods in resting-state fMRI were independent component analysis, seed-based analysis, and graph theory analysis. Through the analysis, we demonstrated that neuroimaging techniques could capture the neural substrates associated with cognitive reserve. Moreover, functional connectivity of brain regions centered on prefrontal and parietal cortex and network areas such as default mode network showed a significant correlation with CR, which indicated a significant association with cognitive performance. CR may induce differential effects according to the disease status. We hope that this perspective on cognitive reserve would be helpful when conducting clinical researches on the mechanisms of traditional Korean medicine for Alzheimer's disease in the future.

Neuroimaging Findings of First-Visit Headache Patients (두통 초진 환자에서 신경영상검사 소견)

  • Kim, Byung-Su;Kim, Soo-Kyoung;Kim, Jae-Moon;Moon, Heui-Soo;Park, Kwang-Yeol;Park, Jeong Wook;Sohn, Jong-Hee;Song, Tae-Jin;Chu, Min Kyung;Cha, Myoung-Jin;Kim, Byung-Kun;Cho, Soo-Jin
    • Journal of the Korean neurological association
    • /
    • v.36 no.4
    • /
    • pp.294-301
    • /
    • 2018
  • Background: Neuroimaging can play a crucial role in discovering potential abnormalities to cause secondary headache. There has been a progress in the fields of headache diagnosis and neuroimaging in the past two decades. We sought to investigate neuroimaging findings according to headache disorders, age, sex, and imaging modalities in first-visit headache patients. Methods: We used data of consecutive first-visit headache patients from 9 university and 2 general referral hospitals. The International Classification of Headache Disorders, third edition, beta version was used in headache diagnosis. We finally enrolled 1,080 patients undertook neuroimaging in this study. Results: Among 1,080 patients (mean age: $47.7{\pm}14.3$, female: 60.8%), proportions of headache diagnosis were as follows: primary headaches, n=926 (85.7%); secondary headaches, n=110 (10.2%); and cranial neuropathies and other headaches, n=43 (4.1%). Of them, 591 patients (54.7%) received magnetic resonance imaging (MRI). Neuroimaging abnormalities were found in 232 patients (21.5%), and their proportions were higher in older age groups and male sex. Chronic cerebral ischemia was the most common finding (n=88, 8.1%), whereas 76 patients (7.0%) were found to have clinically significant abnormalities such as primary brain tumor, cancer metastasis, and headache-relevant cerebrovascular disease. Patients underwent MRI were four times more likely to have neuroimaging abnormalities than those underwent computed tomography (33.3% vs. 7.2%, p<0.001). Conclusions: In this study, the findings of neuroimaging differed according to headache disorders, age, sex, and imaging modalities. MRI can be a preferable neuroimaging modality to identify potential causes of headache.