• Title/Summary/Keyword: Brain hypoxia-ischemia

Search Result 44, Processing Time 0.029 seconds

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.

Influence of Kamijihwang-hwan on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (가미지황환이 저산소성 신경세포 손상에 미치는 영향)

  • Kyung Baek Yeun;Ju Sung Min;Kim Kun Jun;Kim Dae Keun;Kang Jeong Ho;Lee Young Chan;Lee Jun;Kim Young Mok;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1082-1091
    • /
    • 2003
  • To elucidate the neuroprotective effect of Kamijihwang-hwan(KSH) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT, NR, MTT and SRB asssay. The activity of catalase and SOD was measured by spectrophometry, and TNF-α and PKC activity was measured after exposure to hypoxia and treatment of Kamijihwang-hwan(KSH) water extract(KJHWE). Also the neuroprotective effect of KJHWE was researched for the elucidation of neuroprotective mechanism. The results were as follows ; Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 2~26 minutes in these cultures and KJHWE inhibited the decrease of cell viability. H₂O₂ treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 uM for 6 hours, but KJHWE inhibited the decrease of cell viability. Hypoxia decreased catalase and SOD activity, and also TNF-α and PKC activity in these cultured cerebral neurons, but KJHWE inhibited the decrease of the catalase and SOD activity in these cultures. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c form mitochondria. KJHWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxity on cultured mouse cerebral neurons, and the KJHWE has the neuroprotective effect in blocking the neurotoxity induced by hypoxia in cultured mouse cerebral neurons.

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF

The Effect of Hyperthermic Pretreatment in a Neonatal Rat Model of Hypoxic-ischemic Brain Injury (열 전처지가 신생쥐의 허혈성 저산소성 뇌손상에 미치는 영향)

  • Kwak, Su-Hee;Lim, Hae-Ri;Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Lee, Kyung-Hee;Oh, Ki-Won;Shon, Yoon-Kyung
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. In the clinical setting, maternal hyperthermia induces adverse effects on the neonatal brain, but recent studies have shown that hyperthermic pretreatment (PT) plays some role in hypoxic-ischemic (HI) injuries of the developing brain. The present study investigated the effect of hyperthermic PT on HI brain injuries in newborn rats. Methods : HI was produced in 7-day-old neonatal rats by unilateral common carotid artery ligation, followed by hypoxia with 8% oxygen at $38^{\circ}C$ for 2 hours. Twenty-four hours before HI, one-half of the pups were exposed to a $40^{\circ}C$ environment for 2 hours. The severity of the brain injury was assessed 7 days after the HI. Results : Hyperthermic PT reduced the gross and histopathologic findings of brain injury from 64.7 to 31.2% (P<0.05). There were no differences in location and severity of injury between the pretreated and control brains. Conclusion : These findings indicate that hyperthermic PT provides neuroprotective benefits on HI in the developing brain. Also, these findings suggest maternal hyperthermia may have protective effect on perinatal HI brain injuries.

The Neuroprotective Effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) Via Mediation of Nitric Oxide Synthase on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Jung, Ji-Eun;Keum, Kyung-Hae;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2011
  • Purpose: Current studies have demonstrated the neuroprotective effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether CNQX can protect the developing rat brain from HI injury via mediation of nitric oxide synthase. Methods: In an in vivo model, left carotid artery ligation was done in 7-day-old Sprague-Dawley (SD) rat pups. The animals were divided into six groups; normoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with CNQX at a dose of 10 mg/kg (HC). Hypoxia was made by exposure to a 2 hr period in the hypoxic chamber (92% $N_2$, 8% $O_2$). In an in vitro model, embryonic cortical neuronal cell culture of SD rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with CNQX (HC). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$) incubators (94% $N_2$, 5% $CO_2$) for 16 hr. Results: In the in vitvo and in vivo models, the expressions of iNOS and eNOS were reduced in the hypoxia group when compared to the normoxia group, whereas they were increased in the CNQX-treated group compared to the hypoxia group. In contrast, the expression of nNOS was showed reversely. Conclusion: CNQX has neuroprotective property over perinatal HI brain injury via mediation of nitric oxide synthase.

Neuropathological Mechanisms of Perinatal Brain Injury (주산기 뇌손상의 신경병리적 기전)

  • Song Ju-Young;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.199-207
    • /
    • 2003
  • This review describes the neurophathological mechanisms that are implicated in perinatal brain injury. Perinatal brain injury is the most important cause of morbidity and mortality to infants, often leading to spastic motor deficits, mental retardation, seizures, and learning impairments. The immature brain injury is usually caused by cerebral hypoxia-ischemia, hemorrhage, or infection. The important form of perinatal brain injury is the hypoxic-ischemic injury and the cerebral hemorrhage. The pathology of hypoxic-ischemic injury include delayed energy failure by mitochondrial dysfunction, neuronal excitotoxicity and vulnerability of white matter in developing brain. The immature brain has the fragile vascular bed of germinal matrix and can not effectively centralize their circulation. Therefore, the cerebral hemorrhage process is considered to be involved in the periventricular leukomalacia.

  • PDF

The Safety Evaluation of a Potent Antioxidant, Fructose 1,6-diphosphate(FDP), for the Skin Application (항산화력이 우수한 Fructose 1,6-diphosphate(FDP)를 피부적용제로 응용하기 위한 안전성 평가)

  • 김배환;이병석;정경미;안수미;안수선;심영철
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.267-273
    • /
    • 2002
  • Fructose 1,6-diphosphate(FDP), a glycolytic metabolite, is reported to ameliorate inflammation and inhibit the nitric oxide production in murine macrophages stimulated with endotoxin. It is also reported that FDP has cytoprotective effects against hypoxia or ischemia/reperfusion injury in brain and heart, and may play a protective role in ultraviolet B (UVB, 280~320 nm)-injured keratinocyte by attenuating prostaglandin (PG)-E$_2$production and cyclooxygenase (COX)-2 expression, which are possibly through blocking the intracellular reactive oxygen species (ROS) accumulation. Therefore FDP is considered to act as a potent antioxidant especially in the skin. We conducted the several safety tests (single-dose toxicity, primary skin irritation test, eye irritation test, skin sensitization test, phototoxicity test, photosenitization test and human patch test) to see if FDP is safe in case used for the skin application. Our data obtained hitherto suggest that FDP is very safe if applied to the skin.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

Effect of Flunarizine on Experimental Ischemia and Hypoxia in Rats and Mice (실험적(實驗的) 뇌허혈(腦虛血) 및 저산소증(低酸素症)에 대한 Flunarizine의 약효(藥效) -뇌장해에 대한 Flunarizine 효능-)

  • Kim, Eun-Mi;Kim, Young-Jin;Shin, Jeoung-Hee;Yun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.343-350
    • /
    • 1988
  • Recent hypothesis suggested that intracellular accumulation of calcium is a common denominator of ischemic celullar damage. Flunarizine, a calcium entry blocker, posses vasodilating properties in cerebral vascular beds and clinically used in circulatory disorders. The present study was designed to evaluate the effect of flunarizine on ischemic and hypoxic brain damage. An ischemic model was made by bilateral carotid artery ligation (BCAL) in Wistar strain rat. Hypoxic model was made by intravenous injection(i.v.) of KCN to rats and mice. In mice, flunarizine not only reduced the mortality of KCN, but also delayed the onset time of convulsion. The contents of ATP, creatine phosphate and glucose, cerebral energy metabolite, decreased 30 minutes after BCAL and KCN i, v, while that of lactate increased. But these variations were suppressed by flunarizine. Furthermore, increase in the dosage of flunarizne generally promoted the recovery of cerebral energy metabolites in hypoxic animals. The results suggest that flunarizine had a protective effect against ischemic and hypoxic brain damage due to its ameliorating action on the cerebral energy metabolism.

  • PDF

Histological changes on pyramidal layer of hippocampus following transient cerebral ischemia in gerbils (일시적 대뇌허혈에 의한 gerbil 해마의 피라밋층에 조직학적 변화)

  • Yang, Je-hoon;Koh, Phil-ok;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.467-475
    • /
    • 2001
  • Cardiac arrest, hypoxia, shock or seizure has been known to induce cerebral ischemia. This study was designed to investigate the effect of ischemia on hippocampal pyramidal layer induced by transient bilateral occlusion of the common carotid arteries. Mature Mongolian gerbils were sacrificed at days 2, 4, and 7 after carotid occlusion for 10 minutes. Sham-operated gerbils of control group were subjected to the same protocol except for carotid occlusion. During operation for ischemia, body temperature was maintained $37{\pm}0.5^{\circ}C$ in all gerbils. Paraffin-embedded brain tissue blocks were cut into coronal slices and stained with H-E stain or immunostain by TUNEL method. Neurons with the oval and prominent nucleus and without the eosinophilic cytoplasm in the subfield of hippocamapal pyramidal layer were calculated as to be viable neurons. Their chromatins were condensed or clumped. Their nuclei appeared multiangular or irregularly shrinked. The width of the pyramidal layer was reduced due to the loss of nuclei. At day 2 after reperfusion, some neurons in the CA1 subfield were slightly eosinophilic. But most neurons in the CA2 subfield were strongly eosinophilic. At day 4 day, most neurons in the CA1 subfield were severely damaged and at day 7 day, only a few survived neurons were observed. Survived neurons per longitudinal 1mm sector in the CA1, CA2, CA3, and CA4 subfields of pyramidal layer were investigated. At day 2, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 104.5/mm (54.3%), 51.0/mm (33.8%), 105.5/mm (85.6%), and 124.3/mm (93.5%) compared to the nonischemic control group, respectively. At day 4, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfields were 3.2/mm (1.7%), 51.5/mm(34.2%), 95.3/mm (77.4%), and 112.5/mm (84.6%), respectively. At day 7, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 0.8/mm (0.4%), 5.7/mm(3.8%), 9.8/mm (8.0%), and 5.0/mm (3.7%), respectively. The mean numbers of apoptotic positive neurons in the CA1 subfield at day 2, 4, and 7 after reperfusion were 67.8/mm, 153.2/mm and 123.7/mm, respectively. These results suggest that the transient cerebral ischemia cause severe damages in most neurons at day 7 and that the prosminent apoptotic positive neurons in hippocampal pyramidal layer are the delayed neuronal death induced by ischemia.

  • PDF