• Title/Summary/Keyword: Brain based study

Search Result 1,097, Processing Time 0.028 seconds

The Analysis of Researches on the Brain-based Teaching and Learning for Elementary Science Education (초등과학교육에의 적용을 위한 뇌-기반 학습 연구의 교육적 의미 분석)

  • Choi, Hye Young;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.140-161
    • /
    • 2014
  • The purpose of this study was to analyze 181 papers about brain-based learning appeared in domestic scientific journals from 1989 to May of 2012 and suggest application conditions in elementary science education. The results of this study summarizes as follows; First, learning activity suggested by brain-based learning study is mainly explained by working of brain function. Learning activity explained by brain-based learning study are divided into 'learning according to specialized brain function, learning according to brain function integration and learning beyond specialization and integration of hemispheres'. Second, it searched how increased knowledge of brain structure and function affects learning. Analysis from this point of view suggests that brain-based learning study affects learning in many ways especially emotion, creativity and learning motivation. Third, brain-based learning study suggests various possibilities of learning activity reflecting brain plasticity. Plasticity which is one of most important characteristics of brain supports the validity of learning activity as learning disorder treatment and explains the possibility of selective increment of brain function by leaning activity and the need of whole-brain approach to learning activity. Fourth, brain-based learning brought paradigm shifts in education field. It supports learning sophistication on the understanding of student's learning activity, guides learning method that reflects the characteristics of subject and demands reconstruction of curriculum. Fifth, there are many conditions to apply brain-based learning in elementary science education field, learning environment that fits brain-based learning, change of perspectives on teaching and learning of science educators and development of brain-based learning curriculum are needed.

An Integrational Approach for Culinary Education based on Brain-based Teaching Principle (뇌학습 원리에 기초한 조리교육을 위한 통합적 고찰)

  • Lee, Jeong-Ae
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.144-155
    • /
    • 2018
  • This study was conducted to explore the direction of culinary education based brain-based education with analysis of comprehensive research. Questionnaire was completed by frequency analysis, factor analysis, reliability analysis and regression analysis by using SPSS 21. The purpose of this study was to investigate the educational system for creative development through cooking sources and to develop brain-based learning theory, and thus to generate the characteristics and effects of the practice in culinary educational context. The basic principles of brain- based learning are brain plasticity, emotional brain, and ecological brain. Students need to be able to enrich their understanding of social interaction so that social brain's function will be activated through consistent and high-quality feedback. Likewise, students should be capable of collecting everything what they have learned. Defining main ideas and goal of the lesson, four factors were derived from development of competency, personality, application, and diversity. Regarding to the result of this study, the implications for the development of a brain-base program were suggested.

Analysis of Teaching-Learning Programs from the Perspective of Brain-Based Learning Science -Focused on 5th Grade Elementary Science- (뇌-기반 학습 과학적 관점을 적용한 교수.학습 프로그램 분석 -초등학교 5학년 과학을 중심으로-)

  • Lee, Na-Yeon;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.562-573
    • /
    • 2011
  • The purpose of this study was to examine the effects of teaching-learning programs from the perspective of brain-based learning science. Four units in 5th grade elementary science programs of the Revised 2007 National Curriculum were selected as contents to study. As the brain-based learning science analysis method, equations of the brain compatibleness index (BCI) and contribution degree on the brain compatibleness index (BCICRE) were applied to them. This study showed that there were qualitative and quantitative differences among the analyzed teaching-learning programs through the unit and curriculum. The results showed that hands-on activities like experiments or open inquiry activities improved their evaluation of the teaching-learning programs. From the analyzing, teachers can judge whether each teaching-learning program made considered the brain of the learners. Furthermore, this study can provide useful information to consult of various science teaching-learning programs brain-based learning.

The Effects of Brain Education Based on Learning Camp Program for Children's self-directed learning ability and attitude (뇌교육 기반 학습캠프 프로그램이 아동의 자기주도적 학습 능력 및 태도에 미치는 영향)

  • Shin, Jae-Han;Kim, Hye-Seon;Kim, Jin-A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.477-485
    • /
    • 2018
  • The aim of this study was to improve the 'self-directed learning ability and attitudeselementary school students by applying a brain education-based learning program based on brain science in the form of a short term camp in consideration of the elementary school students' brain characteristics and mechanisms. For this purpose, this study was conducted on 4, 5, and 6 elementary school students in Korea. The brain training based learning camp program was conducted for two nights and three days. The camps were conducted twice from February 3 to 5, 2017 with 45 students from grade 6 and from February 22 to July 24, 2017, with 56 students from grades 4 and 5, 101 students in total. The conclusions of this study are as follows. The brain education-based learning camp program was found to be effective in improving the elementary school students' self-directed learning ability and learning attitude. First, the brain education-based learning camp program can increase the learning concentration through brain gymnastics, breathing, and meditation. Second, brain training called 'Brain Screen' among the brain education-based learning camp program can improve the brain ability of memory. Third, it can establish a self - directed learning philosophy of 'My study is done by me' by giving reason and motivation to study through the brain education-based learning camp program.

Brain Based Teaching-learning Model Design about Life Drawing - Focusing on Animation Major Drawing (라이프 드로잉(life Drawing)의 두뇌 기반 교수-학습 전략 연구 - 애니메이션 전공 중심으로)

  • Park, Sung-Won
    • Cartoon and Animation Studies
    • /
    • s.38
    • /
    • pp.71-91
    • /
    • 2015
  • This study is a process to study the life drawing teaching method considering professional characteristics in animation and has a study objective to design the model and teaching method which applies the strategies considering the creative mechanism of the brain. Recently, study results about integrated teaching method are being announced which apply brain based learning principles as the alternative arguments about teaching methods in each area based on creativeness. In other words, integrated education based on creative mechanism in the brain is applied not only to fine arts and drawing education, but also to the entire areas of the arts. Life drawing is an area which demands comprehensive teaching method that vivid expressions could be skillfully obtained by understanding the communication methods with the objects through cognitive senses, creativeness and movements beyond the structural knowledge about human body. Therefore in this study, the strategies and methods for the skillfulness of life drawing and consequently arranged education model structure drawing are to be designed based on the creativeness, study materials and content factors which were analyzed in previous stages of this study. In order to combine the content factors based on creativeness and study materials of the brain which are the results of previous studies, the conclusion has been reached that 5 step cognitive strategy stages to wake brain senses, flexibilize the brain, purify the brain, integrate the brain and become the master of the brain. Strategic methods to execute this were designed with brain gym, right brain energization drawing and HSP(high-level cognizance) training. Teaching and learning model structure diagram which is designed based on this is to be continued to teaching and learning guidelines during the relevant semesters after the research.

The Relationship between Fixation and Brain Preference (고착(Fixation)과 뇌활용성향과의 관계)

  • Lee, Hong;Jun, Yun-sook;Park, Eun-a
    • Knowledge Management Research
    • /
    • v.6 no.1
    • /
    • pp.85-103
    • /
    • 2005
  • The purpose of this study was to identify the relationship between fixation and brain preference. Based on the hemisphere asymmetric theory and fixation, two hypotheses were articulated. They were: 1) Right-brain preference is negatively related to divergent fixation. 2) Left-brain preference is negatively related to convergent fixation. A self-reporting scale for measuring the brain preference with 42 items were developed for the study based on functional characteritics of left and right hemisphere. Samples were collected from 579 college students in K University. Regression analysis showed that right-brain preference was negatively associated with divergent fixation. In the relationship between left-brain preference and convergent fixation, mixed results were produced. Research implication were discussed at the end of the study.

  • PDF

A Preliminary Study on Promoting Policy for New IT Convergence Industry based on Brain Science (뇌과학 기반의 IT융합 신산업 육성에 관한 탐색적 연구)

  • Noh, Kyoo-Sung;Ju, Seong-Hwan
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.199-206
    • /
    • 2012
  • The New IT industry based on Brain Science, a new industry combined with brain science and IT, will develop new IT services based on Brain Science. And this industry will become the new growth engine industry. This study examines the vision/strategies of policy for the New IT Convergence Industry based on Brain Science. Therefore this article's purposes are below; first, structuring the ecosystem for New IT industry based on Brain Science, second, classifying the service types of this industry, and last, suggesting of promotion policy for this industry.

The Effects of a Brain-Based Science Teaching and Learning Model on ${\ulcorner}$Intelligent Life${\lrcorner}$ Course of Elementary School (뇌 기반 과학 교수 학습 모형을 적용한 "슬기로운 생활" 수업의 효과)

  • Lim, Chae-Seong;Ha, Ji-Yeon;Kim, Jae-Young;Kim, Nam-Il
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.60-74
    • /
    • 2008
  • The purpose of this study was to examine the effects of a brain-based science teaching and learning model on the science related attitudes, scientific inquiry skills and science knowledge of the 2nd graders in Intelligent Life course. For this study, 117 elementary students from four classes of the 2nd grade in Seoul were selected. In the comparison group, traditional instruction was implemented and in the experimental group, instruction according to brain-based science teaching and learning model was implemented for four weeks. The results of this study were as follows : There were little differences between the comparison and experimental groups in terms of the science related attitudes except for the sub-domains of interest and curiosity. And brain-based science teaching and learning model programs improved a few scientific inquiry skills, especially observation and classification. In addition, the experimental groups showed a positive effect on science knowledge. In conclusion, brain-based science teaching and learning model programs were more effective in improvement of the science related attitudes, scientific inquiry skills and science knowledge of elementary students.

  • PDF

Brain-based Learning Science: What can the Brain Science Tell us about Education? (뇌기반 학습과학: 뇌과학이 교육에 대해 말해 주는 것은 무엇인가?)

  • Kim, Sung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.375-398
    • /
    • 2006
  • Humans learn by observing, hearing, imitating, doing, and feeling. The brain(cortex) is the central tore of this process. The recent rapid progress of brain science and the active interdisciplinary collaboration between brain science and cognitive science opens a new possibility. That is a new research Held called 'Brain-Based learning Science', 'Edutational Neuroscienre', or 'NeuroEduration' This study reviews the nature and basic assumptions of brain-based learning science, current directions in educational neuroscience research, the neuro-myths, educational implications of neuroscience, and a possibility of making a meaningful connection between brain science and education. Also the future prospects and limitations of the brain-based learning science are discussed.

  • PDF

Development of the Brain Compatibility Index Equation for Brain-based Analysis of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 두뇌기반 분석을 위한 두뇌맞춤지수 산출식 개발)

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.8
    • /
    • pp.1031-1043
    • /
    • 2010
  • The purpose of this study was to develop the brain compatibility index equation for the brain-based analysis method of science teaching-learning program. To develop the index equation, one sample unit in middle school science programs was selected and analyzed by the brain-based analysis frame (CORE Brain Map). Then, the index equation was derived by the CORE Brain Map. In addition, four sample units in elementary science programs were selected to validate the brain compatibleness index equation. From the random network theory of Erdos and Renyi, this study derived the brain compatibility index equation; (BCI=$\frac{L_o}{11(N_o-1)}{\cdot}{\sum}\limits_{i=1}^4l_iw_i$) for quantitative analysis of science teaching-learning program. With this equation, this study could find the quantitative difference among the teaching-learning programs through the unit and curriculum. Brain-based analysis methods for the qualitative and quantitative analysis of science teaching-learning program, which was developed in this study is expected, to be a useful application to analyze and diagnose various science teaching-learning programs.