• 제목/요약/키워드: Brain activity

검색결과 1,645건 처리시간 0.032초

생물 과제의 자기조절 활동에서 나타나는 중등학생의 연령별 두뇌 활성 -fNIRS 연구 (Age-Specific Brain Activation in Secondary School Students' Self-Regulating Activities on Biological Tasks -fNIRS Study)

  • 이서리;권용주
    • 과학교육연구지
    • /
    • 제46권1호
    • /
    • pp.30-39
    • /
    • 2022
  • 이 연구의 목적은 중등학생의 자기조절 과정에서 동화, 갈등, 조절의 세부 과정에 대한 뇌 활성을 비교하고 분석하는 것이다. 자기조절 과제는 생물학적 계통발생 과제로 제시되었고, 뇌활성은 fNIRS로 측정 및 분석되었다. 그 결과 동화 과정과 비교하여 갈등 과정에서 좌측 DLPFC, OFC, FP 영역에서 유의미한 활성이 발견되었고, 조절 과정에서는 DLPFC, VLPFC에서 유의미한 활성화가 발견되었다. 중등학생의 학년이 높아질수록 갈등 과정에서도 DLPFC가 증가하고 동화 과정에서도 VLPFC가 증가한다. 또한, 갈등과 조절 과정을 비교한 결과, 7학년 학생들은 오른쪽 VLPFC에서 유의미한 뇌 활동을 보였고, 9학년 학생들은 조절 과정에서 왼쪽 FP와 DLPFC 영역에서 유의미한 뇌 활동을 보였지만, 11학년 학생들은 이 과정에서 유의미한 뇌 활동을 보이지 않았다. 이러한 결과는 신경학적 연구 방법이 인지 활동과 강의실 교육 상황과 관련된 교육 연구에 적용될 수 있음을 보여준다.

가상현실 기반 몰입형 복합중재프로그램이 경도인지장애 환자의 인지기능 및 두뇌 활성에 미치는 영향 (The Effect of Multimodal Intervention through Virtual Reality-Based Immersion Program on Cognitive Function and Brain activity in Patients with Mild Cognitive Impairment)

  • 임예림;이선민
    • 대한물리의학회지
    • /
    • 제18권1호
    • /
    • pp.87-97
    • /
    • 2023
  • PURPOSE: The purpose of this study was to investigate the effect of multimodal intervention through VR (virtual reality)-based immersion program on the cognitive function and brain activity of patients with mild cognitive impairment. METHODS: The subjects of the study were 10 people in the experimental group who applied a complex intervention that performed cognitive tasks using the movement of the upper extremities through the VR program, and 10 people in the control group who received traditional occupational therapy. After the study intervention was applied 5 times a week, 30 minutes a day for a total of 8 weeks, LOTCA-G(Lowenstein Occupational Therapy Cognitive Assessment for Geriatric Population) and NIRSIT LITE were used to compare. RESULTS: Significant differences in cognitive function and brain activity were noted between the pre- test and post-test in the experimental group. Brain activity showed statistically significant differences in four channels of the working memory domain and one channel of the metacognitive domain (p < . 05). Comparative analysis of the difference between the two groups revealed statistically significant differences in cognitive function and brain activity. The brain activity showed statistically significant differences in three channels of the working memory domain and one channel of the metacognitive domain (p < .05). CONCLUSION: Through the results of this study, it was found that the complex intervention of performing cognitive tasks using upper extremity movements through the VR program had a positive effect on the cognitive function of patients with mild cognitive.

뇌내(腦內) Norepinephrine함량변화(含量變化)와 Clonazepam의 항경련효과(抗痙攣效果)에 미치는 6-Hydroxydopamine의 영향(影響) (The Effect of 6-Hydroxydopamine on the Anticonvulsant Activity of Clonazepam and Norepinephrine in Brain)

  • 윤재순;김영주
    • 약학회지
    • /
    • 제32권1호
    • /
    • pp.40-49
    • /
    • 1988
  • There is evidence that brain norepinephrine may play a role in experimentally induced seizures in animals. Thus the present experiments were undertaken in an attempt to explore the role of brain norepinephrine in anticonvulsant activity of clonazepam. 6-Hydroxydopamine was given to newborn rats and PTZ-induced seizures were tested $70{\sim}90$ days after birth and the rats were killed for determination of brain norepinephrine 8 days after the seizure test. Depletion of norepinephrine in the rat brain significantly potentiated the PTZ-induced convulsions and antagonized the effect of clonazepam on clonic seizures, tonic seizures and the number of seizures, but the latency to the seizure and the mortality has not been altered. However the 6-hydroxydopamine-induced antagonism of anticonvulsant action was surmountable by increasing the dose of clonazepam. These results show that brain norepinephrine may play an important role in seizure susceptability as well as in the anticonvulsant activity of clonazepam in rats.

  • PDF

카오스 특성에 의한 뇌의 활동도 분석 (Brain Activity Analysis by using Chaotic Characteristics)

  • 김택수;김현술;최윤호;박상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.478-485
    • /
    • 1999
  • The purpose of this paper was the determination of the relationship between the chaotic charateristics and various levels of brain activities. Assuming that EEG(eletroencephalogram), which is generated by a nonlinear electiecal behavior of billions of neurons in the brain, has chaotic characteristics, it was confirmed by frequency spectrum analysis, log frequency spectrum analysis, correlation dimension analysis and Lyapunov exponents analysis. Chaotic characteristics are related to the degree of brain activity. The slope of log frequency spectrum increased and the correlation dimension decreased with respect to the brain activities, while the lagrest Lyapunov exponent has some rough correlation.

  • PDF

Synthesis and Antibacterial Activity of Novel 2-Oxo-pyrrolidinyl Oxazolidinones

  • Bhattarai, Deepak;Lee, Sun-Hee;Kim, Hyeong-Kyu;Kang, Soon-Bang;Pae, Ae-Nim;Kim, Eunice Eun-Kyeong;Oh, Taeg-Won;Cho, Sang-Nae;Keum, Gyo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1310-1316
    • /
    • 2012
  • Novel antibacterial oxazolidinones bearing pyrrolidinone ring system at the C-5 side chain were synthesized and their in vitro antibacterial activities were evaluated. Most of the synthesized oxazolidinones showed good antibacterial activity against the Gram-positive and Gram-negative bacteria tested.

인삼사포인 성분이 에탄올을 투여한 쥐의 뇌 Aldehyde Dehydrogenase 활성에 미치는 영향 (The Effect of Saponins of Panax ginseng C.A. Meyer on Brain Aldehyde Dehydrogenase Activity of Ethanol Administered Rat)

  • 이영돈;주충노
    • Journal of Ginseng Research
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 1994
  • Sprague-Dawley rats were given freely with 15% ethanol (control) and 15% ethanol containing (1) 0.1% ginseng saponin, (2) 0.02% ginsenoside $Rb_1$, and (3) $Rg_1$ (tests) instead of water for 7 days and aldehyde dehydrogenase (ALDH) and monoamine oxidase (MAO) activity in different regions of brain were examined. In control group, total ALDH activity with indoleacetaldehyde and acetaldehyde as substrate in all different regions was lower than that of normal group except in the hippocampus. The inhibitory effect on the activity was prominent in the corpus striatum and was not in the hippocampus. However, low-$K_m$ ALDH activity in all different regions was much lower than that of normal group. A considerable decrease in mitochondria ALDH activity in cerebellum and striatum was also observed in control group. In test groups total, low-$K_m$, and mitochondria AkDH activities in all different regions were higher than those in control group. Although ALDH activity in the striatum of test group was higher than control group, it was relatively depressed as compared with normal. There was not found a remarkable difference in extent of stimulating effect on the AkDH activity according to the ginseng saponin components. When biogenic aldehydes were used as substrate, ALDH activity with 3,4-dihydroxy-phenylacetaldehyde (DOPAL) in all brain regions of control group was lower than that using 5-hydroxy-indoleacetaldehyde (HIAL) and 3,4-dihydroxyphenylglycolaldehyde (NORAL) as substrate. In control group, ALDH activity with biogenic aldehydes above mentioned was markedly inhibited in the striatum contrary to other regions. The higher ALDH activity with biogenic aldehydes in test group than in control was found in the striatum, cerebrum, and cerebellum. MAO activity in the cerebellum was inhibited in control group and slightly increased in test group. The results of present study suggest that the corpus striatum is significantly affected by ethanol exposure while the hippocampus is not and that ginseng saponin fraction and ginsenosid es might have a preventive effect against depression of brain ALDH activity by chronic administration of ethanol.

  • PDF

Effect of Jaeumgeonbigagamtang (JGT) on Restraint-induced Oxidative Stress in Mouse Brain

  • Yoon, Jung-Hun;An, Joung-Jo;Jo, Hyun-Kyung;Son, Chang-Gue;Kim, Yoon-Sik;Seol, In-Chan;Yoo, Ho-Rhyong
    • 대한한의학회지
    • /
    • 제32권6호
    • /
    • pp.41-53
    • /
    • 2011
  • Objectives: This study was performed to investigate the effect of Jaeumgeonbigagamtang (JGT) onrestraint-induced oxidative stress in the mouse brain. Methods: After treatment with JGT, CBC, ROS, MDA, TAC, SOD, activity of catalase, and total GSH content were analyzed. Results: JGT had a strong antioxidant activity by in vitro assay as presented GEAC. JGT treatment significantly ameliorated decrease of blood WBC and increase of platelet count. JGT (50mg/kg) treatment significantly ameliorated increase of MDA and GSH content level in brain tissue. JGT (100mg/kg) treatment significantly ameliorated increase of MDA and activity of TAC level in brain tissue. JGT (200mg/kg) treatment significantly ameliorated increase of ROS, MDA, activity of TAC level and depletion of catalase level in brain tissue. Conclusion: The present study demonstrated antioxidant activity in brain tissue. This result would be consistent with the long clinical efficacy of JGT, and this finding may provide a strong possibility of JGT as a drug candidate for brain-specific multiple disorders and symptoms.

식이 DHA와 환경보충이 흰쥐의 뇌지방조성 및 Acetylcholinesterase활성에 미치는 영향 (Effect of DHA and Environmental Enrichment on Brain Fatty Acid Composition and Acetylcholinesterase Activity)

  • 김문정
    • Journal of Nutrition and Health
    • /
    • 제29권1호
    • /
    • pp.32-40
    • /
    • 1996
  • To investigate the effect of dietary docosahexaenoic acid(DHA) and environmental enrichment on brain fatty acid composition and acetylcholinesterase(AChE) activity, two groups of was fed isocaloric diets containing 10 or 12% dietary lipids for 7 weeks. A third group was fed 10% (w/w) dietary lipids with supplemented 2% DHA-rich fish oil. Each diet group was housed either in a stainless steel cage individually or in a large enriched cage with toys where 7 rats were kept together. The fatty acid composition of plasma and brain was significantly affected by dietary lipid composition but not by environmental enrichment. Fish oil supplementation significanlty decreased plasma levels of monounsaturated fatty acids(MUFA) and increased polyunsaturated fatty acids(PUFA). Fish oil supplemented groups also maintained lower plasma n-6 fatty acids and higher n-3 fatty acids levels than unsupplemented groups. The fish oil supplementation significantly decreased arachidonic acid and increased eicosapentaenic, docosapentaenoic acids, and DHA in brain fatty acid composition. In addition, brain DHA level in supplemented groups tended higher than the unsupplemented. Brain, AChE activity significantly increased by the environmental enrichment but not by the fish oil supplementation. These finding suggest that the 2% fish oil (0.57% DHA & 0.31% EPA, per diet weigth) supplementation is enough to accumulate n-3 fatty acids and to change the n-6 n-3 ratio in brain and environmental enrichment might promote the learning ability.

  • PDF

성체 뇌 조직의 신경발생 (Neurogenesis in the Adult Brain)

  • 김식현;김상수
    • PNF and Movement
    • /
    • 제6권3호
    • /
    • pp.37-51
    • /
    • 2008
  • Purpose : This paper focuses on the emerging concept that adult central nervous system neurogenesis can be regulated by various physical activity, enriched environment, and pathological conditions. Neurogenesis-the production of new neuron-is an ongoing process that persists in the adult brain of mammalian, including humans. Result : The adult brain was thought be limited in its regenerative function. However, this concepts changed, recent evidence of neurogenesis in certain adult brain areas such as SVZ(subventricular zone) and SGZ(subgranular zone) in hippocampus, raised possibility for improved treatment for patient with stroke. Neural plasticity has an adaptive purpose, because an ability of the brain to change in response to peripheral stimulation, physical activity, experience, and injury. Conclusions : The major function of the neurogenesis in adult brain seems to be replacing the neuron that die regularly in discrete adult brain regions. These cells are capable of functionally integrating into neighboring neural cells, and reconnecting to the correct neural networks. This review suggest that various intervention, including physical activity, voluntary movement training, skilled forelimb reaching training, and enriched environment, induced neural cell production in certain adult brain, and associated with functional recovery after stroke.

  • PDF

건강한 성인에서의 고전적 공포 조건화 및 소거에 연관된 뇌 영역에 대한 뇌영상 연구 고찰 (A Review of Brain Imaging Studies on Classical Fear Conditioning and Extinction in Healthy Adults)

  • 강일향;서채원;윤수정;김정윤
    • 생물정신의학
    • /
    • 제28권2호
    • /
    • pp.23-35
    • /
    • 2021
  • Fear conditioning and extinction, which are adaptive processes to learn and avoid potential threats, have essential roles in the pathophysiology of anxiety disorders. Experimental fear conditioning and extinction have been used to identify the mechanism of fear and anxiety in humans. However, the brain-based mechanisms of fear conditioning and extinction are yet to be established. In the current review, we summarized the results of neuroimaging studies that examined the brain changes-functional activity and structures-regarding fear conditioning or extinction in healthy individuals. The functional activity of the amygdala, insula, anterior cingulate gyrus, ventromedial prefrontal cortex, and hippocampus changed dynamically with both fear conditioning and extinction. This review may provide an up-to-date summary that may broaden our understanding of pathophysiological mechanisms of anxiety disorder. In addition, the brain regions that are involved in the fear conditioning and extinction may be considered as potential treatment targets in the future studies.