Effect of Jaeumgeonbigagamtang (JGT) on Restraint-induced Oxidative Stress in Mouse Brain

  • Yoon, Jung-Hun (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • An, Joung-Jo (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Jo, Hyun-Kyung (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Son, Chang-Gue (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Kim, Yoon-Sik (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Seol, In-Chan (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Yoo, Ho-Rhyong (Department of Oriental Internal Medicine, College of Oriental Medicine, Daejeon University)
  • Received : 2011.08.16
  • Accepted : 2011.09.26
  • Published : 2011.11.30

Abstract

Objectives: This study was performed to investigate the effect of Jaeumgeonbigagamtang (JGT) onrestraint-induced oxidative stress in the mouse brain. Methods: After treatment with JGT, CBC, ROS, MDA, TAC, SOD, activity of catalase, and total GSH content were analyzed. Results: JGT had a strong antioxidant activity by in vitro assay as presented GEAC. JGT treatment significantly ameliorated decrease of blood WBC and increase of platelet count. JGT (50mg/kg) treatment significantly ameliorated increase of MDA and GSH content level in brain tissue. JGT (100mg/kg) treatment significantly ameliorated increase of MDA and activity of TAC level in brain tissue. JGT (200mg/kg) treatment significantly ameliorated increase of ROS, MDA, activity of TAC level and depletion of catalase level in brain tissue. Conclusion: The present study demonstrated antioxidant activity in brain tissue. This result would be consistent with the long clinical efficacy of JGT, and this finding may provide a strong possibility of JGT as a drug candidate for brain-specific multiple disorders and symptoms.

Keywords

References

  1. Green MS, Kaye JA, Ball MJ. The Oregon brain aging study: neuropathology accompanying healthy aging in the oldest old. Neurology. 2000; 54(1): 105-13. https://doi.org/10.1212/WNL.54.1.105
  2. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol. 2009;66(10):1210-5. https://doi.org/10.1001/archneurol.2009.201
  3. Kunik ME, Snow AL, Davila JA, Steele AB, Balasubramanyam V, Morgan RO, et al. Causes of aggressive behavior in patients with dementia. J Clin Psychiatry. 2010; 71(9):1145-52. https://doi.org/10.4088/JCP.08m04703oli
  4. Isaia G, M Bo, Nobili G, Cappa G, Mondino S, Massaia M, et al. Costs of the in-home patients affected by dementia. Arch Gerontol Geriatr. 2009; 49 Suppl 1:147-51.
  5. Sasaki T, Unno K, Tahara S, Kaneko T. Agerelated increase of reactive oxygen generation in the brains of mammals and birds: is reactive oxygen a signaling molecule to determine the aging process and life span? Geriatr Gerontol Int. 2010; 10 Suppl 1:S10-24.
  6. Li RC, Guo SZ, Lee SK, Gozal D. Neuroglobin protects neurons against oxidative stress in global ischemia. J Cereb Blood Flow Metab. 2010; 30 (11):1874-82. https://doi.org/10.1038/jcbfm.2010.90
  7. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12(10):1161-208. https://doi.org/10.2174/0929867053764635
  8. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Licata G, et al. Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem. 2009; 9(14):1317-34. https://doi.org/10.2174/156802609789869646
  9. Michael-Titus AT. Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids. 2007; 77(5-6):295-300. https://doi.org/10.1016/j.plefa.2007.10.021
  10. Liu T, Jin H, Sun QR, Xu JH, Hu HT. The neuroprotective effects of tanshinone IIA on $\beta$- amyloid-induced toxicity in rat cortical neurons. Neuropharmacology. 2010; 59(7-8):595-604. https://doi.org/10.1016/j.neuropharm.2010.08.013
  11. Bora KS, Sharma A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J Ethnopharmacol. 2010; 129(3):403-9. https://doi.org/10.1016/j.jep.2010.04.030
  12. Yun YG. Clinical application and compatibility of JaYumKeonBiTang. J Korean Oriental Med Prescription. 2002; 10(1):57-60.
  13. Kim JH, Lee KS. Experimental study on the effects of Jaeumgeonbi-tang on sedative action and hematosis. J Korean Oriental Med. 1988; 9(1):35-41.
  14. Lee HY, Baik TH. Effects of Jaeumgeonbi-tang Extract on Indomethacin-Induced Gastric Mucosal Lesions. J Korean Oriental Med. 2004; 25(3):111- 22.
  15. Lee HK. Effects of the Jaeumgeonbi-tang on Learning Ability Improvement and Recovery from Damaged Liver in Alcoholism. Graduate school of Woosuk University, 2009.
  16. Jeong HW, Kim HS, Yang GH. Mechanism of Jaeumgenby-tang on the Regional Cerebral Blood Flow, Mean Arterial Blood Pressure and Cardiac Muscle Contractile Force in Rats. Korean J. Oriental Physiology & Pathology. 2002; 16(3): 507-13.
  17. Im GM, Jeong HW. Effects of Jaeumgenby-tang adding Aurantii Fructus.Gastrodae Rhizoma on the Brain Cell and Changes of Cerebral Hemodynamics. Korean J. Oriental Physiology & Pathology. 2003; 17(1):64-70.
  18. Shin HS, An JJ, Jo HK, Kim YS, Seol IC, Yoo HR, et al. Statistical Study in 70 Cases for Dizziness Patients on the Effect of Jaeumgeonbitang Gamibang. Korean J. Oriental Physiology & Pathology. 2010; 24(1):171-76.
  19. Kambayashi Y, Binh NT, W Asakura H, Hibino Y, Hitomi Y, Ogino K, et al. Efficient assay for total antioxidant capacity in human plasma using a 96-well microplate. J Clin Biochem Nutr. 2009; 44(1):46-51. https://doi.org/10.3164/jcbn.08-162
  20. Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T. High-throughput spectrophotometric assay of reactive oxygen species in serum. Genetic toxicology and environmental mutagenesis. 2007; 631:55-61. https://doi.org/10.1016/j.mrgentox.2007.04.006
  21. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 186(1):271-8.
  22. Beers RF, Siezer IW. A spectrophotometer method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952; 195:133-40.
  23. Evans JC, Ellman GL. The ionization of cysteine. Biochem Biophys Acta. 1959; 33:574-6. https://doi.org/10.1016/0006-3002(59)90157-X
  24. A Sigh. Free Radicals and Antioxidants in Biomedicine: CRC Handbook. 1st ed. Boca Raton, FL:CRC Press. 1989:17-28.
  25. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007; 35(Pt 5):1147-50.
  26. Brkic S, Tomic S, Maric D, Novakov Mikic A, Turkulov V. Lipid peroxidation is elevated in female patients with chronic fatigue syndrome. Med Sci Monit. 2010; 16(12):CR628-32.
  27. Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel. 2009 Mar; 12(2):240-5.
  28. Benz CC, Yau C. Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer. 2008; 8(11):875-9. https://doi.org/10.1038/nrc2522
  29. Ying W, Xiong ZG. Oxidative stress and NAD+ in ischemic brain injury: current advances and future perspectives. Curr Med Chem. 2010; 17 (20):2152-8. https://doi.org/10.2174/092986710791299911
  30. Head E, Rofina J, Zicker S. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging. Vet Clin North Am Small Anim Pract. 2008; 38(1):167- 78. https://doi.org/10.1016/j.cvsm.2007.10.002
  31. Konishi T. Brain oxidative stress as basic target of antioxidant traditional oriental medicines. Neurochem Res. 2009; 34(4):711-6. https://doi.org/10.1007/s11064-008-9872-9
  32. Ichikawa H, Wang L, Konishi T. Prevention of cerebral oxidative injury by post-ischemic intravenous administration of Shengmai San. Am J Chin Med. 2006; 34(4):591-600. https://doi.org/10.1142/S0192415X06004120
  33. Wang NL, Liou YL, Lin MT, Lin CL, Chang CK. Chinese herbal medicine, Shengmai San, is effective for improving circulatory shock and oxidative damage in the brain during heatstroke. J Pharmacol Sci. 2005; 97(2):253-65. https://doi.org/10.1254/jphs.FP0040793
  34. Wang L, Nishida H, Ogawa Y, Konishi T. Prevention of oxidative injury in PC12 cells by a traditional Chinese medicine, Shengmai San, as a model of an antioxidant-based composite formula. Biol Pharm Bull. 2003; 26(7):1000-4. https://doi.org/10.1248/bpb.26.1000
  35. Ichikawa H, Konishi T. In vitro antioxidant potentials of traditional Chinese medicine, Shengmai San and their relation to in vivo protective effect on cerebral oxidative damage in rats. Biol Pharm Bull. 2002; 25(7):898-903. https://doi.org/10.1248/bpb.25.898
  36. Moore PD, Yedjou CG, Tchounwou PB. Malathion- induced oxidative stress, cytotoxicity, and genotoxicity in human liver carcinoma (HepG2) cells. Environ Toxicol. 2010; 25(3):221-6.
  37. Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA. Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res. 2005; 39(11):1147-54. https://doi.org/10.1080/10715760500143478
  38. Moller P, Wallin H, Knudsen LE. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact. 1996; 102(1):17-36. https://doi.org/10.1016/0009-2797(96)03729-5
  39. Pryor WA, Stanley JP. A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem. 1975; 40(24):3615-7. https://doi.org/10.1021/jo00912a038
  40. Balk Rde S, Bridi JC, Portella Rde L, Carvalho NR, Dobrachinski F, Soares FA, et al. Clomipramine treatment and repeated restraint stress alter parameters of oxidative stress in brain regions of male rats. Neurochem Res. 2010; 35 (11):1761-70. https://doi.org/10.1007/s11064-010-0240-1
  41. Kurata M, Suzuki M. Glutathione regeneration in calcium-loaded erythrocytes: a possible relationship among calcium accumulation, ATP decrement and oxidative damage. Complementary Biochemistry Physiology Brithish Biochemical. Molecular Biology. 1994; 109(2-3):305-12.
  42. Parke DV, Sapota A. Chemical toxicity and reactive oxygen species. International Journal of Occupied Medicine Environment Health. 1996; 9(4):331-40.
  43. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004; 61(2):192-208. https://doi.org/10.1007/s00018-003-3206-5
  44. de la Torre JC, Mussivand T. Can disturbed brain microcirculation cause Alzheimer's disease? Neurol Res. 1993; 15(3):146-53.
  45. Hamdheydari L, Christov A, Ottman T, Hensley K, Grammas P. Oxidized LDLs affect nitric oxide and radical generation in brain endothelial cells. Biochem Biophys Res Commun. 2003; 311(2): 486-90. https://doi.org/10.1016/j.bbrc.2003.10.024
  46. Tripathy D, Thirumangalakudi L, Grammas P. RANTES upregulation in the Alzheimer's disease brain: a possible neuroprotective role. Neurobiol Aging. 2010; 31(1):8-16. https://doi.org/10.1016/j.neurobiolaging.2008.03.009
  47. Im GM, Park CH, Jeong HW. Mechanism of Jaeumgenby-tang adding Aurantii Fructus.Gastrodae Rhizoma on the Improvement and Changes of Cerebral Hemodynamics. Korean J. Oriental Physiology & Pathology. 2003; 17(2):416-422.