DOI QR코드

DOI QR Code

Age-Specific Brain Activation in Secondary School Students' Self-Regulating Activities on Biological Tasks -fNIRS Study

생물 과제의 자기조절 활동에서 나타나는 중등학생의 연령별 두뇌 활성 -fNIRS 연구

  • Received : 2022.02.10
  • Accepted : 2022.04.21
  • Published : 2022.04.30

Abstract

The purpose of this study is to compare and analyze secondary school student's brain activity on assimilation, conflict, and accommodation processes of self-regulation. The self-regulation task was presented a biological phylogenetic task, and the brain activity was measured and analyzed with fNIRS. As a result, a significant activation was found in the left DLPFC, OFC, and FP regions in the conflict process compared to the assimilation process, and a significant activation was found in DLPFC and VLPFC in the accommodation process. As the age increase, the DLPFC also increases in the conflict process and VLPFC increases in the assimilation process. In addition, comparing conflict and accommodation process, the 7th grade students show a significant brain activity in the right VLPFC, the 9th grade students show significant brain activity in the left FP and DLPFC areas in the accommodation process. However, the 11th grade students did not show any significant brain activity at this process. These results presumably show that the neurological research method could be applied to educational research in cognitive activity and classroom instructional situation.

이 연구의 목적은 중등학생의 자기조절 과정에서 동화, 갈등, 조절의 세부 과정에 대한 뇌 활성을 비교하고 분석하는 것이다. 자기조절 과제는 생물학적 계통발생 과제로 제시되었고, 뇌활성은 fNIRS로 측정 및 분석되었다. 그 결과 동화 과정과 비교하여 갈등 과정에서 좌측 DLPFC, OFC, FP 영역에서 유의미한 활성이 발견되었고, 조절 과정에서는 DLPFC, VLPFC에서 유의미한 활성화가 발견되었다. 중등학생의 학년이 높아질수록 갈등 과정에서도 DLPFC가 증가하고 동화 과정에서도 VLPFC가 증가한다. 또한, 갈등과 조절 과정을 비교한 결과, 7학년 학생들은 오른쪽 VLPFC에서 유의미한 뇌 활동을 보였고, 9학년 학생들은 조절 과정에서 왼쪽 FP와 DLPFC 영역에서 유의미한 뇌 활동을 보였지만, 11학년 학생들은 이 과정에서 유의미한 뇌 활동을 보이지 않았다. 이러한 결과는 신경학적 연구 방법이 인지 활동과 강의실 교육 상황과 관련된 교육 연구에 적용될 수 있음을 보여준다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1F1A1058641).

References

  1. Ballesta, S., Shi, W., Conen, K., & Padoa-Schioppa, C. (2020). Values encoded in orbitofrontal cortex are causally related to economic choices. Nature, https://dx.doi.org/10.1038/s41586-020-2880-x.
  2. Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205. https://doi.org/10.1016/j.cortex.2012.05.022
  3. Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3-4), 296-312. https://doi.org/10.1111/j.1469-7610.2006.01611.x
  4. Blackwood, N., Simmons, A., Bentall, R., Murray, R., & Howard, R. (2004). The cerebellum and decision making under uncertainty. Cognitive Brain Research, 20(1), 46-53. https://doi.org/10.1016/j.cogbrainres.2003.12.009
  5. Boorman, E. D., Behrens, T. E., Woolrich, M. W., & Rushworth, M. F. (2009). How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron, 62(5), 733-743. https://doi.org/10.1016/j.neuron.2009.05.014
  6. Byeon, J. H.,, Kwon, S. H., & Kwon, Y. J., (2014). Identifying the difference between the cognitive thinking process between science high school students and general high school students through comparison of brain activity in the biological classification process. Biological Education, 42(2), 194-207.
  7. Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46(7), 1813-1827. https://doi.org/10.1016/j.neuropsychologia.2008.03.019
  8. Carew, T. J., & Magsamen, S. H. (2010). Neuroscience and education: An ideal partnership for producing evidence-based solutions to guide 21st century learning. Neuron, 67(5), 685-688. https://doi.org/10.1016/j.neuron.2010.08.028
  9. Fletcher, C. P., & Henson, A. R. (2001). Frontal lobes and human memory insights from functional neuroimaging. Brain, 12(5), 849-881. https://doi.org/10.1093/brain/124.5.849
  10. Ham, K., Kim, K. P., Jeong, H., & Yoo, S. H. (2018). Increased ventrolateral prefrontal cortex activation during accurate eyewitness memory retrieval: An exploratory functional near-infrared spectroscopy study. Korean Journal of Legal Medicine, 42(4), 146-152. https://doi.org/10.7580/kjlm.2018.42.4.146
  11. Hashweh, M. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8, 229-249. https://doi.org/10.1080/0140528860080301
  12. Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859-862. https://doi.org/10.1038/nature02966
  13. Hong, S., Lee, J., Heo, J., Baek, H. J., & Park, K. S. (2015). The estimation of activated prefrontal brain area due to the execution of mental tasks using fNIRS. Journal of Biomedical Engineering Research, 36, 177-182. https://doi.org/10.9718/JBER.2015.36.5.177
  14. Jeong, H. R., Park, J. W., & Kim, J. G. (2016). Development of an educational program called 'Change in the Biological Classification System' using argumentative activities. Biological Education, 44(3), 463-476. https://doi.org/10.15717/bioedu.2016.44.3.463
  15. Jin, Y., Lee, J., Kim, S., & Yoon, B. (2019). Noninvasive brain stimulation over M1 and DLPFC cortex enhances the learning of bimanual isometric force control. Human Movement Science, 66, 73-83. https://doi.org/10.1016/j.humov.2019.03.002
  16. Koechlin, E. (2011). Frontal pole function: What is specifically human?. Trends in Cognitive Sciences, 15(6), 241. https://doi.org/10.1016/j.tics.2011.04.005
  17. Kwon, S. H., Park, S. H., Park, J. S., Hwang, N. R., & Kwon, Y. J. (2020). Identification of fNIRS brain activity and exploration of deep learning-based predictive model in self-regulation process taking mirror task. Brain, Digital, & Learning, 10(4), 365-376. https://doi.org/10.31216/BDL.2020.10.4.365
  18. Kwon, Y. J., Choi, S. J., Park, Y. B., & Jeong, J. S. (2003). Scientific thinking types and processes generated in inductive inquiry by college students. Journal of the Korean Association for Science Education, 23(3), 286-298.
  19. Kwon, Y. J., Lee, J. K., Shin, D. H., & Jeong, J. S. (2009). Changes in brain activation induced by the training of hypothesis generation skills: An fMRI study. Brain and Cognition, 69(2), 391-397. https://doi.org/10.1016/j.bandc.2008.08.032
  20. Kwon, Y. J., Jeong, J. S., Shin, D. H., Lee, J. K., Lee, I. S., & Byeon, J. H. (2011). Generationand evaluation of scientific knowledge. Seoul, Korea: Hakjisa.
  21. Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, CA: Wadsworth Publishing Company.
  22. Lawson, A. E. (2006). The neurological basis of learning, development and discovery: Implications for science and mathematics instruction (Vol. 18). Springer Science & Business Media.
  23. Lawson, A. E., & Wollman, W. T. (1977). Using chemistry problems to provoke selfregulation. Journal of Chemical Education, 54(1), 41. https://doi.org/10.1021/ed054p41
  24. Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating. Annals of the New York Academy of Sciences, 1224(1), 40. https://doi.org/10.1111/j.1749-6632.2011.05958.x
  25. Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and biobehavioral reviews, 34(3), 269-284. https://doi.org/10.1016/j.neubiorev.2009.07.008
  26. McLaughlin, N. C. R., Wiebe, D., Fulwiler, C., & Gansler, D. A. (2009). Differential contributions of lateral prefrontal cortex regions to visual memory processes. Brain Imaging and Behavior, 3(2), 202-211. https://doi.org/10.1007/s11682-009-9062-7
  27. Ministry of Education [MOE]. (2015). Science curriculum. Ministry of Education Notice No. 2015-74.
  28. Organisation for Economic Co-operation and Development [OECD]. (2002). Understanding the Brain: Towards a New Learning Science. Paris, France: OECD Publishing.
  29. OBELAB (2019). NIRSIT analysis tool v2.2. Seoul, Korea: OBELAB.
  30. Park, J. S., & Kwon, Y. J. (2021). Comparison of science gifted and general students' brain activity and thinking process in the process of self-regulation -An fNIRS study. Brain, Digital, & Learning, 11, 405-416.
  31. Park, S. H., Park, J. S., Hwang, N. R., Kwon, S. H., & Kwon, Y. J. (2019). An exploration of the brain study through a practical measurment and application using fNIRS in educational research. Brain, Digital, & Learning, 9, 213-231. https://doi.org/10.31216/BDL.2019.9.3.213
  32. Pascual-Leone, J. (1970). A mathematical model for the transition rule in Piaget's developmental stages. Acta psychologica, 32, 301-345. https://doi.org/10.1016/0001-6918(70)90108-3
  33. Pinti, P., Aichelburg, C., Gilbert, S., Hamilton, A., Hirsch, J., Burges, P., & Tachtsidis, I. (2018). A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Japanese Psychological Research, 60(4), 347-373. https://doi.org/10.1111/jpr.12206
  34. Roh, T. H., Lim, H. Y., & Kang, S. J. (2000). Comparison of cognitive conflict induction and conceptual change according to sex and age. Journal of the Korean Academy of Education, 20(4), 634-641.
  35. Schendan, H. E. (2012). Implicit memory. http://hdl.handle.net/10026.1/1207. In V. S. Ramachandran (Ed.), Encyclopedia of human behavior. Burlington, MA: Elsevier/Academic Press.
  36. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417-463. https://doi.org/10.1016/S0149-7634(00)00014-2
  37. Toepper, M., Gebhardt, H., Beblo, T., Thomas, C., Driessen, M., Bischoff, M., & Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 765(4), 1244-1253.
  38. Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2005). Variants of uncertainty in decision-making and their neural correlates. Brain Research Bulletin, 67(5), 403-412. https://doi.org/10.1016/j.brainresbull.2005.06.011
  39. Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PloS One, 8(7), e68910. https://doi.org/10.1371/journal.pone.0068910
  40. Yamashita, Y., Maki, A., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1996). Noninvasive near-infrared topography of human brain activity using intensity modulation spectroscopy. Optical Engineering, 35(4), 1046-1049. https://doi.org/10.1117/1.600721
  41. Zajkowski, W. K., Kossut, M., & Wilson, R. C. (2017). A causal role for right frontopolar cortex in directed, but not random, exploration. eLife, 6, e27430. https://doi.org/10.7554/elife.27430
  42. Zhenhong, H., Lin, Y., Xia, L., Liu, Z., Zhang, D., & Elliott, R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: a tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357-366. https://doi.org/10.1093/scan/nsy026