• 제목/요약/키워드: Brain Cognition

검색결과 235건 처리시간 0.028초

Quantitative RT-PCR for Measuring C-fos Gene Expression in Rat Brain after ECS (전기경련충격시 경쟁적 역전사 중합효소연쇄반응(CRT-PCR)을 이용한 흰쥐 뇌 c-fos 유전자의 발현 양식 분석)

  • Yang, Byung-Hwan;Lee, Jei-Wook;Park, Eung-Chul;Yu, Jae-Hak;Cho, Goang-Won;Yang, Bo-Gee;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • 제3권2호
    • /
    • pp.181-190
    • /
    • 1996
  • To clarify the mechanism of action of electroconvulsive shack(ECS) in respect to molecular biology, and to detect the quantitative amount of change of c-fos gene expression after ECS in the rat's brain, the authors obtained brain specimens from the striatum, cerebral cortex, hippocampus, and cerebellum. Each brain was removed within 30min. after ECS(130V, 0.5sec) and ECS-sham. Then we performed RT-PCR. The results are 1) ECS was found to affect the expression of immediate early genes. 2) the cerebral cortex and hippocampus was more influenced by ECS thon in the cerebellum and striatum. From these results, we can suggest that ECS is related to the mechanism of cognition, mood, memory which is correlated to cerebral cortex and hippocampus.

  • PDF

The Effect of Cognitive Rehabilitation Program for Traumatic Brain Injury Patients (외상성 뇌손상 환자를 위한 인지재활 프로그램의 효과)

  • Park, Joon-Ho;Jung, Han-Yong;Lee, SoYoung Irene
    • Korean Journal of Biological Psychiatry
    • /
    • 제9권2호
    • /
    • pp.120-128
    • /
    • 2002
  • Objectives:The purpose of this study was to develop a cognitive rehabilitation program and to investigate the effect of the program that restores the deficiency of memory, which is necessary to operate on high cognitive function such as problem-solving or judgement, for TBI(traumatic brain injury) patients. Methods:Sixteen TBI patients participated in this study. The inclusion criteria were : 1) aged 18 to 60 ; 2) higher than IQ 80 ; 3) lower than MMSE-K 25 and K-MAS(Korean version of Memory Assessment Scale) 85. We administered our program to an experimental group(N=8) in order to improve attention and memory for 4 weeks(total 12 section). Our program was not administrated to a control group(N=8) for 4 weeks. After administrating this program, we measured MMSE-K and K-MAS for the experimental and control groups. Results:The findings of the study were as follows. 1) the experimental group showed significant improvement on MMSE-K score in comparison with baseline, but the control group did not. 2) the experimental group showed significant improvement on K-MAS score in comparison with baseline, but the control group did not. In particular, among the three subscales of K-MAS, only verbal memory scale revealed significant improvement, while visual and short-term memory scales revealed no differences. Conclusion:Our cognitive rehabilitation program improves cognitive state and memory, particulary verbal memory, for TBI patients. These results imply that our program aids in rehabilitation of basic cognition such as memory which is necessary to operate on high cognitive function such as problem-solving or judgement, for TBI(traumatic brain injury) patients.

  • PDF

Effects of Total Sleep Deprivation on the First Positive Lyapunov Exponent of the Waking EEG

  • Kim, Dai-Jin;Jeong, Jae-Seung;Chae, Jeong-Ho;Kim, Soo-Yong;Go, Hyo-Jin;Paik, In-Ho
    • Science of Emotion and Sensibility
    • /
    • 제1권1호
    • /
    • pp.69-78
    • /
    • 1998
  • Sleep deprivation may affect the brain functions such as cognition and consequently, dynamics of the BEG. We examined the effects of sleep deprivation on chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours They were checked by EEG during two days. thc first day of baseline period and the second day of total sleep deprivation period. EEGs were recorded from 16 channels for nonlinear analysis. We employed a method of minimum embedding dimension to calculate the first positive Lyapunov exponent. Fer limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Our results show that the sleep deprived volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fp1, F4. F8. T4, T5. C3, C4. P3. P4. O1) compared with the values of baseline periods. These results suggested that sleep deprivation leads to decrease of chaotic activity in brain and impairment of the information processing in the brain. We suggested that nonlinear analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for understanding the role if sleep and the effects of sleep deprivation on the brain function.

  • PDF

Sequential Nonlinear Recurrence Quantification Analysis of Attentional Visual Evoked Potential (집중 시각자극 유발전위의 순차적 비선형 RQA 분석)

  • Lee, Byung-Chae;Yoo, Sun-Kook;Kim, Hye-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권11호
    • /
    • pp.195-205
    • /
    • 2013
  • The analysis of electroencephalographic signal associated with the attention is essential for the understanding of human cognition. In this paper, the characteristic differences between the attention and inattention status in the brain were inspected by nonlinear analysis. The recurrence quantification analysis was applied to the relatively small number of samples of evoked potential having time varying characteristics, where the recurrence plot (RP), the color recurrence plot (CRP), and mean and time-sequential trend parameters were extracted. The dimension and the time delay in phase transformation can be determined by the paired set of extracted parameters. It is observed from RP, CRP, and parameters that the brain dynamics in attention is more complex than that in the inattention, as well as the synchronized brain response is stable in the mean sense but locally time varying. It is feasible that the non-linear analysis method can be useful for the analysis of complex brain dynamics associated during visual attentional task.

The Study of the Effect on the Improvement of Cognitive function by Cognitive Health Program (실버인지건강프로그램이 노인의 인지기능 향상에 미치는 영향에 대한 연구)

  • Kim, Neung Yeon;Jeong, Hyun Jong;Jang, Ah Ryoeng
    • 한국노년학
    • /
    • 제39권4호
    • /
    • pp.801-824
    • /
    • 2019
  • As becoming an aging society, there is a rising interest on dementia. But Dementia prevention program, executed at the national level, is in insufficient state. In this study, to design and diffuse Dementia prevention program, this study conduct Cognition improvement program and evaluate cognitive function in aspects of Discrimination, Organization, Thinking, Memorizing, and Concentration capacity. So that this study try to investigate how this Cognition improvement program will affect in detail to cognitive function in senior people. This study designed Silver Cognition program for 5 aspects of cognitive function; Discrimination, Organization, Thinking, and Concentration capacity. And this studyrecruited experimental group with control group, and conducted the program to them for 3 months. At the start and the end of the program, this study evaluated their MMSE-DS score, Geriatric depression scale, Quality of life score, and cognitive function test score by survey. Finally, this study compared and analyzed these first and second score to find the effects of this program to cognitive function. As the results compared between first and second score of MMSE-DS test, Geriatric depression scale, Quality of life scale, and cognitive function test, Silver Cognition program has a significant effects to improve cognitive function, MMSE-DS score and Geriatric depression scale. As the results of the test on cognitive function in 5 aspects, cognitive function is more improved in the order of Memorizing, Thinking, Concentration, Discrimination, and Organization capacity. After the Silver Cognition program, Memorizing and Thinking capacity have most improvement. But aging of brain function is faster in these two capacity, so if more concentrated education is conducted for these two capacity, then it will bring better effects for prevention of dementia.

The Relationship between Brain Activities and Presence on Communication using an Avatar in Virtual Reality (가상현실에서 아바타를 통한 정보전달 시 뇌의 활성화와 현존감의 관계)

  • Lee, Hyeon-Rae;Kim, So-Young;Yoon, K.J.;Nam, Sang-Won;Kim, Jae-Jin;Kim, In-Young;Kim, Sun-I.;Ku, Jeong-Hun
    • Korean Journal of Cognitive Science
    • /
    • 제17권4호
    • /
    • pp.357-373
    • /
    • 2006
  • Virtual reality (VR) provides a virtual experiment (VE) context consisting of information presented to the senses of the user. The user perceiver and interprets the VE context, and then naturally recognizes a level of realism in the VE. Presence is often thought of as the sense of 'being there' in the n. Presence includes overall feelings about the information conveyed from a virtual avatar to the user. Therefore, there must be brain mechanisms for integrating sensory information about presence.'Feeling of presence' is related with the user's cognition and perception about information on communication through medium. Thus 'feeling of presence' may characterize perceptual mechanisms in the brain. We studied these mechanisms by presenting a VR that consisted of an avatar telling a story about a social conversation. We performed covariance analysis on subjective brain activity (fMRI) during the story presentation with a presence score. The data analysis revealed that activity in several brain areas was correlated with the presence store. A positive correlation was shown in the right lingual gyrus, right cuneus, left lingual gyrus, right fusiform gyrus, left inferior temporal gyrus, anterior cingulate cortex and right posterior cingulate cortex of the brain. This study showed the brain mechanism to be related the feeling of presence and brain activities in our subjects, using VR to communicate information.

  • PDF

Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice

  • Lee, Young;Han, Na-Eun;Kim, Wonju;Kim, Jae Gon;Lee, In Bum;Choi, Su Jeong;Chun, Heejung;Seo, Misun;Lee, C. Justin;Koh, Hae-Young;Kim, Joung-Hun;Baik, Ja-Hyun;Bear, Mark F.;Choi, Se-Young;Yoon, Bong-June
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.360-372
    • /
    • 2020
  • The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.

Fractal Properties and Cognitive Ecological effects in Space Design - Focused on Landscape Pattern - (공간디자인에 적용된 프랙탈 특성의 인지생태론적 효과 - 랜드스케이프 패턴을 중심으로 -)

  • Kim, Joo-Mi
    • Korean Institute of Interior Design Journal
    • /
    • 제20권2호
    • /
    • pp.120-130
    • /
    • 2011
  • The purpose of this study is to propose cognitive ecological effects of fractal patterns in space design. This study investigated the perception and cognition problems regarding landscape patterns showing fractal properties from the cognitive perspective instead of the traditional speculative approach. In particular, the researcher has verified that fractal geometry theory and fractal pattern concept provide insight in space aesthetic values and cognitive effects. Research results are as follows. First, most environmentally-friendly fractal urban forms provide cognitive connectivity. In particular, this space provides a positive emotional response and preference to humans and displays self-organized complexity. This study found that such complexity of space form has characteristics corresponding to parallel cognitive structures of the human brain. Simultaneously, the researcher suggests that the fractal landscape pattern is an alternative for stiff and homogenized modern space. Second, fractal patterns provide hierarchical connectivity within the brain through continuous difference and repetition. In particular, self-similarities of fractal patterns administer significant visual grouping and coherence in human perception. It can be determined whether scaling coherence facilitates easier organization in cognitive organization. Third, fractal patterns in space design provide the basic method for achieving the connection between concept, construction, and urban factors. As a result, the researcher has suggested that scale distribution of geometrical factors, such as fractal patterns, an be a design method to connect various space typologies.

Scientific Evidence for the Addictiveness of Tobacco and Smoking Cessation in Tobacco Litigation

  • Roh, Sungwon
    • Journal of Preventive Medicine and Public Health
    • /
    • 제51권1호
    • /
    • pp.1-5
    • /
    • 2018
  • Smokers keep smoking despite knowing that tobacco claims many lives, including their own and others'. What makes it hard for them to quit smoking nonetheless? Tobacco companies insist that smokers choose to smoke, according to their right to self-determination. Moreover, they insist that with motivation and willpower to quit smoking, smokers can easily stop smoking. Against this backdrop, this paper aims to discuss the addictive disease called tobacco use disorder, with an assessment of the addictiveness of tobacco and the reasons why smoking cessation is challenging, based on neuroscientific research. Nicotine that enters the body via smoking is rapidly transmitted to the central nervous system and causes various effects, including an arousal response. The changes in the nicotine receptors in the brain due to continuous smoking lead to addiction symptoms such as tolerance, craving, and withdrawal. Compared with other addictive substances, including alcohol and opioids, tobacco is more likely to cause dependence in smokers, and smokers are less likely to recover from their dependence. Moreover, the thinning of the cerebral cortex and the decrease in cognitive functions that occur with aging accelerate with smoking. Such changes occur in the structure and functions of the brain in proportion to the amount and period of smoking. In particular, abnormalities in the neural circuits that control cognition and decision-making cause loss of the ability to exert self-control and autonomy. This initiates nicotine dependence and the continuation of addictive behaviors. Therefore, smoking is considered to be a behavior that is repeated due to dependence on an addictive substance, nicotine, instead of one's choice by free will.

Protective Effect of Arabinoxylan against Scopolamine-Induced Learning and Memory Impairment

  • Kim, Chang-Yul;Lee, Gil-Yong;Park, Gyu Hwan;Lee, Jongwon;Jang, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.467-473
    • /
    • 2014
  • The purpose of this study is to investigate the memory enhancing effect and underlying molecular mechanism of arabinoxylan (AX), a major component of dietary fiber in wheat against scopolamine (SCO)-induced amnesia in Sprague-Dawley (SD) rats. Diverse behavior tests including Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. SCO significantly decreased the spontaneous alterations in Y-maze test and step-through latency in passive avoidance test, whereas increased time spent to find the hidden platform in Morris water maze test compared with the sham control group. In contrast, oral administration of AX (25 mg/kg and 50 mg/kg) effectively reversed the SCO-induced cognitive impairments in SD rats. Furthermore, AX treatment up-regulated the expression of brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus via promoting activation of cAMP response element binding protein (CREB). Therefore, our findings suggest that AX can improve SCO-induced learning and memory impairment possibly through activation of CREB and up-regulation of BDNF levels, thereby exhibiting a cognition-enhancing potential.