Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.063

Protective Effect of Arabinoxylan against Scopolamine-Induced Learning and Memory Impairment  

Kim, Chang-Yul (Department of Pathology, College of Oriental Medicine, Daegu Haany University)
Lee, Gil-Yong (Department of Pathology, College of Oriental Medicine, Daegu Haany University)
Park, Gyu Hwan (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
Lee, Jongwon (Deparment of Biochemistry, School of Medicine, Catholic University of Daegu)
Jang, Jung-Hee (Department of Pharmacology, School of Medicine, Keimyung University)
Publication Information
Biomolecules & Therapeutics / v.22, no.5, 2014 , pp. 467-473 More about this Journal
Abstract
The purpose of this study is to investigate the memory enhancing effect and underlying molecular mechanism of arabinoxylan (AX), a major component of dietary fiber in wheat against scopolamine (SCO)-induced amnesia in Sprague-Dawley (SD) rats. Diverse behavior tests including Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. SCO significantly decreased the spontaneous alterations in Y-maze test and step-through latency in passive avoidance test, whereas increased time spent to find the hidden platform in Morris water maze test compared with the sham control group. In contrast, oral administration of AX (25 mg/kg and 50 mg/kg) effectively reversed the SCO-induced cognitive impairments in SD rats. Furthermore, AX treatment up-regulated the expression of brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus via promoting activation of cAMP response element binding protein (CREB). Therefore, our findings suggest that AX can improve SCO-induced learning and memory impairment possibly through activation of CREB and up-regulation of BDNF levels, thereby exhibiting a cognition-enhancing potential.
Keywords
Arabinoxylan; Brain-derived neurotrophic factor; cAMP response element binding protein; Learning and memory; Scopolamine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, P., Zhang, Q. and Whistler, R. L. (2003) L-Arabinose release from arabinoxylan and arabinogalactan under potential gastric aciditities. Cereal Chem. 80, 252-254.   DOI
2 Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J. R., Emerson, B., Hogenesch, J. B., Unterman, T., Young, R. A. and Montminy, M. (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. U.S.A. 102, 4459-4464.   DOI   ScienceOn
3 Asanuma, M., Nishibayashi, S., Iwata, E., Kondo, Y., Nakanishi, T., Vargas, M. G. and Ogawa, N. (1996) Alterations of cAMP response element-binding activity in the aged rat brain in response to administration of rolipram, a cAMP-specific phosphodiesterase inhibitor. Brain Res. Mol. Brain Res. 41, 210-215.   DOI
4 Bitner, R. C. (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer's disease therapeutics. Biochem. Pharmacol. 83, 705-714.   DOI
5 Brenner, T., Nizri, E., Irony-Tur-Sinai, M., Hamra-Amitay, Y. and Wirguin, I. (2008) Acetylcholinesterase inhibitors and cholinergic modulation in myasthenia gravis and neuroinflammation. J. Neuroimmunol. 201-202, 121-127.   DOI
6 Broekaert, W. F., Courtin, C. M., Verbeke, K., Wiele, T. V. D., Verstraete, W. and Delcour, J. A. (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51, 178-194.   DOI   ScienceOn
7 Craig, L. A., Hong, N. S. and McDonald, R. J. (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci. Biobehav. Rev. 35, 1397-1409.   DOI
8 Cunha, C., Brambilla, R. and Thomas, K. L. (2010) A simple role for BDNF in learning and memory? Front. Mol. Neurosci. 3, 1.
9 Dienel, G. A., Liu, K. and Cruz, N. F. (2001) Local uptake of 14C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J. Neurosci. Res. 66, 812-820.   DOI
10 Eidelberg, E., Fishman, J. and Hams, M. L. (1967) Penetration of sugars across the blood-brain barrier. J. Physiol. 191, 47-57.   DOI
11 Jang, J. H., Kim, C. Y., Lim, S. H., Yang, C. H., Song, K. S., Han, H. S., Lee, H. K. and Lee, J. (2010) Neuroprotective effects of Triticum aestivum L. against beta-amyloid cell death and memory impairments. Phytother. Res. 24, 76-84.   DOI   ScienceOn
12 Gebruers, K., Dornez, E., Boros, D., Fraś, A., Dynkowska, W., Bedo, Z., Rakszegi, M., Delcour, J. A. and Courtin, C. M. (2008) Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56, 9740-9749.   DOI   ScienceOn
13 Han, H. S., Jang, J. H., Jang, J. H., Choi, J. S., Kim, Y. J., Lee, C., Lim, S. H., Lee, H. K. and Lee, J. (2010) Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia. J. Med. Food 13, 572-578.   DOI   ScienceOn
14 Hu, H., Zhang, R., Zhang, Y., Xia, Z. and Hu, Y. (2010) Role of CREB in the regulatory action of sarsasapogenin on muscarinic M1 receptor density during cell aging. FEBS Lett. 584, 1549-1552.   DOI
15 Jin, C. H., Shin, E. J., Park, J. B., Jang, C. G., Li, Z., Kim, M. S., Koo, K. H., Yoon, H. J., Park, S. J., Choi, W. C., Yamada, K., Nabeshima, T. and Kim, H. C. (2009) Fustin flavonoid attenuates ${\beta}$-amyloid (1-42)-induced learning impairment. J. Neurosci. Res. 87, 3658-3670.   DOI
16 Joh, E. H., Lee, I. A. and Kim, D. H. (2011) Kalopanaxsaponins A and B isolated from Kalopanax pictus ameliorate memory deficits in mice. Phytother. Res. 26, 546-551.
17 Karran, E., Mercken, M. and De Strooper, B. (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698-712.   DOI
18 Lee, C., Park, G. H. and Jang, J. H. (2011b) Cellular antioxidant adaptive survival response to 6-hydroxydopamine-induced nitrosative cell death in C6 glioma cells. Toxicology 283, 118-128.   DOI
19 Kim, H. J., Leeds, P. and Chuang, D. M. (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J. Neurochem. 110, 1226-1240.   DOI   ScienceOn
20 Lee, C., Park, G. H., Kim, C. Y. and Jang, J. H. (2011a) [6]-Gingerol attenuates ${\beta}$-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol. 49, 1261-1269.   DOI   ScienceOn
21 Ward, J. L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A. M., Nystrom, L., Andersson, A. A., Aman, P., Boros, D., Rakszegi, M., Bedo, Z. and Shewry, P. R. (2008) The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. J. Agric. Food Chem. 56, 9699-9709.   DOI
22 Wang, A., Si, H., Liu, D. and Jiang, H. (2012) Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells. J. Nutr. 142, 1-6.   DOI
23 Xue, W., Hu, J. F., Yuan, Y. H., Sun, J. D., Li, B. Y., Zhang, D. M., Li, C. J. and Chen, N. H. (2009) Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory. Acta Pharmacol. Sin. 30, 1211-1219.   DOI   ScienceOn