Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0279

Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice  

Lee, Young (Department of Life Sciences, Korea University)
Han, Na-Eun (Department of Life Sciences, Korea University)
Kim, Wonju (Department of Life Sciences, Korea University)
Kim, Jae Gon (Department of Life Sciences, Korea University)
Lee, In Bum (Department of Life Sciences, Korea University)
Choi, Su Jeong (Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry)
Chun, Heejung (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS))
Seo, Misun (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST))
Lee, C. Justin (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS))
Koh, Hae-Young (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST))
Kim, Joung-Hun (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
Baik, Ja-Hyun (Department of Life Sciences, Korea University)
Bear, Mark F. (The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology)
Choi, Se-Young (Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry)
Yoon, Bong-June (Department of Life Sciences, Korea University)
Abstract
The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.
Keywords
basal ganglia; bridging collaterals; globus pallidus; stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wu, Y., Richard, S., and Parent, A. (2000). The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res. 38, 49-62.   DOI
2 Yin, H.H., Mulcare, S.P., Hilario, M.R.F., Clouse, E., Holloway, T., Davis, M.I., Hansson, A.C., Lovinger, D.M., and Costa, R.M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333-341.   DOI
3 Yoon, B.J., Smith, G.B., Heynen, A.J., Neve, R.L., and Bear, M.F. (2009). Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl. Acad. Sci. U. S. A. 106, 9860-9865.   DOI
4 Choi, T.Y., Lee, S.H., Kim, Y.J., Bae, J.R., Lee, K.M., Jo, Y., Kim, S.J., Lee, A.R., Choi, S., Choi, L.M., et al. (2018). Cereblon maintains synaptic and cognitive function by regulating BK channel. J. Neurosci. 38, 3571-3583.   DOI
5 Cui, G.H., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238-242.   DOI
6 Deacon, R.M. (2006). Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat. Protoc. 1, 122-124.   DOI
7 DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281-285.   DOI
8 Dolan, R.J. and Dayan, P. (2013). Goals and habits in the brain. Neuron 80, 312-325.   DOI
9 Ferguson, S.M., Eskenazi, D., Ishikawa, M., Wanat, M.J., Phillips, P.E., Dong, Y., Roth, B.L., and Neumaier, J.F. (2011). Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22-24.   DOI
10 Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K.C., Matsuda, W., and Kaneko, T. (2011). Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 33, 668-677.   DOI
11 Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423-430.   DOI
12 Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chsase, T.N., Monsma, F.J., Jr., and Sibley, D.R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429-1432.   DOI
13 Graybiel, A.M. (2000). The basal ganglia. Curr. Biol. 10, R509-R511.   DOI
14 Guez-Barber, D., Fanous, S., Harvey, B.K., Zhang, Y., Lehrmann, E., Becker, K.G., Picciotto, M.R., and Hope, B.T. (2012). FACS purification of immunolabeled cell types from adult rat brain. J. Neurosci. Methods 203, 10-18.   DOI
15 Hikida, T., Kimura, K., Wada, N., Funabiki, K., and Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896-907.   DOI
16 Hume, R.I., Dingledine, R., and Heinemann, S.F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028-1031.   DOI
17 Kawaguchi, Y., Wilson, C.J., and Emson, P.C. (1990). Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421-3438.   DOI
18 Kim, J., Lee, S., Kang, S., Jeon, T.I., Kang, M.J., Lee, T.H., Kim, Y.S., Kim, K.S., Im, H.I., and Moon, C. (2018). Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Mol. Cells 41, 454-464.   DOI
19 Kim, H.F., Amita, H., and Hikosaka, O. (2017a). Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron 94, 920-930. e3.   DOI
20 Kim, H.J., Lee, J.H., Yun, K., and Kim, J.H. (2017b). Alterations in striatal circuits underlying addiction-like behaviors. Mol. Cells 40, 379-385.   DOI
21 Kim, W., Im, M.J., Park, C.H., Lee, C.J., Choi, S., and Yoon, B.J. (2013). Remodeling of the dendritic structure of the striatal medium spiny neurons accompanies behavioral recovery in a mouse model of Parkinson's disease. Neurosci. Lett. 557 Pt B, 95-100.   DOI
22 LeDoux, J. (2012). Rethinking the emotional brain. Neuron 73, 653-676.   DOI
23 Abdi, A., Mallet, N., Mohamed, F.Y., Sharott, A., Dodson, P.D., Nakamura, K.C., Suri, S., Avery, S.V., Larvin, J.T., Garas, F.N., et al. (2015). Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667-6688.   DOI
24 Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626.   DOI
25 Kravitz, A.V., Tye, L.D., and Kreitzer, A.C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816-818.   DOI
26 Kreitzer, A.C. and Malenka, R.C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643-647.   DOI
27 Lambeth, C.R., White, L.J., Johnston, R.E., and de Silva, A.M. (2005). Flow cytometry-based assay for titrating dengue virus. J. Clin. Microbiol. 43, 3267-3272.   DOI
28 Liu, S.J. and Zukin, R.S. (2007). Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126-134.   DOI
29 Lee, S.H., Liu, L.D., Wang, Y.T., and Sheng, M. (2002). Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661-674.   DOI
30 Lee, Y., Lee, H., Kim, H.W., and Yoon, B.J. (2015). Altered trafficking of alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the striatum leads to behavioral changes in emotional responses. Neurosci. Lett. 584, 103-108.   DOI
31 Kozorovitskiy, Y., Saunders, A., Johnson, C.A., Lowell, B.B., and Sabatini, B.L. (2012). Recurrent network activity drives striatal synaptogenesis. Nature 485, 646-650.   DOI
32 Carretie, L., Rios, M., de la Gandara, B.S., Tapia, M., Albert, J., Lopez-Martin, S., and Alvarez-Linera, J. (2009). The striatum beyond reward: caudate responds intensely to unpleasant pictures. Neuroscience 164, 1615-1622.   DOI
33 Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366-375.   DOI
34 Lobo, M.K., Covington, H.E., 3rd., Chaudhury, D., Friedman, A.K., Sun, H., Damez-Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy, P.J., et al. (2010). Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385-390.   DOI
35 Manvich, D.F., Webster, K.A., Foster, S.L., Farrell, M.S., Ritchie, J.C., Porter, J.H., and Weinshenker, D. (2018). The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci. Rep. 8, 3840.   DOI
36 Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381-425.   DOI
37 Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357-381.   DOI
38 Bateup, H.S., Santini, E., Shen, W., Birnbaum, S., Valjent, E., Surmeier, D.J., Fisone, G., Nestler, E.J., and Greengard, P. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. U. S. A. 107, 14845-14850.   DOI
39 Bhatia, K.P. and Marsden, C.D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859-876.   DOI
40 Carvalho Poyraz, F., Holzner, E., Bailey, M.R., Meszaros, J., Kenney, L., Kheirbek, M.A., Balsam, P.D., and Kellendonk, C. (2016). Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. J. Neurosci. 36, 5988-6001.   DOI
41 Cazorla, M., de Carvalho, F.D., Chohan, M.O., Shegda, M., Chuhma, N., Rayport, S., Ahmari, S.E., Moore, H., and Kellendonk, C. (2014). Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81, 153-164.   DOI
42 Cazorla, M., Shegda, M., Ramesh, B., Harrison, N.L., and Kellendonk, C. (2012). Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J. Neurosci. 32, 2398-2409.   DOI
43 Stroobants, S., Gantois, I., Pooters, T., and D'Hooge, R. (2013). Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav. Brain Res. 241, 32-37.   DOI
44 Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., and Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997.   DOI
45 Roseberry, T.K., Lee, A.M., Lalive, A.L., Wilbrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526-537.   DOI
46 Shen, W.X., Flajolet, M., Greengard, P., and Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848-851.   DOI
47 Taverna, S., Ilijic, E., and Surmeier, D.J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J. Neurosci. 28, 5504-5512.   DOI
48 Tecuapetla, F., Matias, S., Dugue, G.P., Mainen, Z.F., and Costa, R.M. (2014). Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat. Commun. 5, 4315.   DOI
49 Tecuapetla, F., Jin, X., Lima, S.Q., and Costa, R.M. (2016). Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703-715.   DOI
50 Tecuapetla, F., Koos, T., Tepper, J.M., Kabbani, N., and Yeckel, M.F. (2009). Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J. Neurosci. 29, 8977-8990.   DOI