• 제목/요약/키워드: Brain Anatomy

검색결과 345건 처리시간 0.028초

In search of subcortical and cortical morphologic alterations of a normal brain through aging: an investigation by computed tomography scan

  • Mehrdad Ghorbanlou;Fatemeh Moradi;Mohammad Hassan Kazemi-Galougahi;Maasoume Abdollahi
    • Anatomy and Cell Biology
    • /
    • 제57권1호
    • /
    • pp.45-60
    • /
    • 2024
  • Morphologic changes in the brain through aging, as a physiologic process, may involve a wide range of variables including ventricular dilation, and sulcus widening. This study reports normal ranges of these changes as standard criteria. Normal brain computed tomography scans of 400 patients (200 males, 200 females) in every decade of life (20 groups each containing 20 participants) were investigated for subcortical/cortical atrophy (bicaudate width [BCW], third ventricle width [ThVW], maximum length of lateral ventricle at cella media [MLCM], bicaudate index [BCI], third ventricle index [ThVI], and cella media index 3 [CMI3], interhemispheric sulcus width [IHSW], right hemisphere sulci diameter [RHSD], and left hemisphere sulci diameter [LHSD]), ventricular symmetry. Distribution and correlation of all the variables were demonstrated with age and a multiple linear regression model was reported for age prediction. Among the various parameters of subcortical atrophy, BCW, ThVW, MLCM, and the corresponding indices of BCI, ThVI, and CMI3 demonstrated a significant correlation with age (R2≥0.62). All the cortical atrophy parameters including IHSW, RHSD, and LHSD demonstrated a significant correlation with age (R2≥0.63). This study is a thorough investigation of variables in a normal brain which can be affected by aging disclosing normal ranges of variables including major ventricular variables, derived ventricular indices, lateral ventricles asymmetry, cortical atrophy, in every decade of life introducing BW, ThVW, MLCM, BCI, ThVI, CMI3 as most significant ventricular parameters, and IHSW, RHSD, LHSD as significant cortical parameters associated with age.

흰쥐의 급성 메스암페타민 투여에 대한 침(鍼)의 효과 (The Effect of Acupuncture on Methamphetamineinduced Locomotor Activity and C-Fos Expression in Rat Brain)

  • 최성훈;이봉효;박인식;최난희;김광중;장은영;구세광;송익수;양재하
    • Journal of Acupuncture Research
    • /
    • 제26권1호
    • /
    • pp.39-47
    • /
    • 2009
  • Objectives : The mesolimbic dopamine system is believed to play a major role in the reinforcing effect and behavioral hyperactivity of abused drugs including methamphetamine. In the present study, the effect of acupuncture on methamphetamine-induced locomotor activity and c-Fos expression in the striatum and nucleus accumbens of rats were examined. Methods : Male Sprague-Dawley rats received acupuncture at bilateral Yanggu($SI_5$) point for 30seconds immediately before the subcutaneous injection of saline or methamphetamine(0.5mg/kg). The total amount of locomotor activity for 90min were measured just before brain samples were taken for immunohistochemistry. Results : Results showed that acupuncture at the specific point $SI_5$, but not control point(Kunlun, $BL_{60}$) significantly reduced locomotor activity and c-Fos expression in the striatum and nucleus accumbens induced by acute administration of methamphetamine. Conclusions : These results suggest that acupuncture may be effective in suppressing the reinforcing effect of methamphetamine by regulating neuronal activity.

  • PDF

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

뇌졸중에서 클로로겐산 투여에 의한 γ-enolase 감소 완화 효과 (Alleviation of γ-enolase decrease by the chlorogenic acid administration in the stroke animal model)

  • 강주빈;;고민서;고필옥
    • 대한수의학회지
    • /
    • 제63권1호
    • /
    • pp.6.1-6.9
    • /
    • 2023
  • Stroke is a major cause of death and long-term disability. Chlorogenic acid is a phenolic compound with a potent neuroprotective effect. γ-enolase is a phosphopyruvate hydratase found in mature neurons and plays an important role in neuronal survival. This study investigated whether chlorogenic acid regulates the expression of γ-enolase during cerebral ischemia. Middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemia. Adult male rats were used and chlorogenic acid (30 mg/kg) or phosphate buffered saline (PBS) was injected intraperitoneally 2 hours after MCAO surgery. Cerebral cortical tissues were collected 24 hours after MCAO surgery. Our proteomic approach identified the reduction of γ-enolase caused by MCAO damage and the mitigation of this reduction by chlorogenic acid treatment. Results of reverse transcription-polymerase chain reaction and Western blot analyses showed a decrease in γ-enolase expression in the PBS-treated MCAO group. However, chlorogenic acid treatment attenuated this decrease. Results of immunofluorescence staining showed the change of γ-enolase by chlorogenic acid treatment. These results demonstrated that chlorogenic acid regulates the γ-enolase expression during MCAO-induced ischemia. Therefore, we suggest that chlorogenic acid mediates the neuroprotective function by regulating the γ-enolase expression in cerebral ischemia and may be used as a therapeutic agent for brain diseases including stroke.

Effects of age and gender on spatial orientation of human corpus callosum in healthy Koreans

  • Hwang, Seung-Jun;Park, Chan;Hong, Hea-Nam;Ryu, Ji-Yeon;Park, In-Sung;Rhyu, Im-Joo
    • Animal cells and systems
    • /
    • 제15권4호
    • /
    • pp.274-278
    • /
    • 2011
  • The changes in the corpus callosum (CC) with age and gender remain largely subject to dispute, which might come from the different strategies for analyzing the size and shape of CC. We have investigated this issue by measuring some variables reflecting the spatial orientation of CC on magnetic resonance imaging in Koreans, which minimize individual variances in the brain. The subjects were composed of young adults in their twenties (51 male, 59 female) and elderly adults in their sixties and seventies (60 male, 71 female). The total area of CC, length and height of CC, the central angle and the four angles suggested by Oka et al. were measured. The whole area and the central angle of CC were not significantly affected by age and gender. The height and length of CC were significantly greater in elderly people. The angle connecting genu, upper notch of pons and splenium was significantly larger in the elderly group. Furthermore, all four angles were significantly different between male and female subjects. These results confirm that the spatial orientation of CC is influenced by age and gender.

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum

  • Park, Yong Soo;Jeon, Ji Hyun;Lee, Seung Hee;Paik, Sun Sook;Kim, In-Beom
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.110-116
    • /
    • 2018
  • Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.

Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules

  • Hyun-Wook Kim;Seung Hak Oh;Se Jeong Lee;Ji eun Na;Im Joo Rhyu
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.6.1-6.6
    • /
    • 2020
  • The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines. The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule. The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum. These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

뇌혈관질환에서 다이아목스부하 뇌 단일광자방출 전산화단층촬영 (Diamox-enhanced Brain SPECT in Cerebrovascular Diseases)

  • 최윤영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.85-90
    • /
    • 2007
  • Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrahge were reviewed in this paper.

속단(續斷)이 중풍모델 흰쥐 비목근의 근섬유위축 및 MyoD 발현에 미치는 영향 (Effects of Dipsaci Radix on Muscle Fiber Atrophy and MyoD Expression in Gastrocnemius of MeAO Rats)

  • 한상우;류사현;심은섭;이동은;박민희;김범회;최현;정혁상;손낙원;손영주
    • 대한본초학회지
    • /
    • 제23권2호
    • /
    • pp.159-168
    • /
    • 2008
  • Objectives : The present study has been undertaken to investigate the effects of Dipsaci Radix on Muscle Fiber Atrophy and MyoD Expression in Gastrocnemius of MCAO Rats Methods : In order to investigate effects of Dipsaci radix on the skeletal muscle atrophy following stroke, cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) in the rats. Water extract of Dipsaci radix (184.4 mg/100 g) was treated for 4 weeks, once a day orally, after the MCAO. Effects were evaluated with muscle fiber type composition and cross-sectioned area of muscle fibers in gastrocnemius of the unaffected & affected hind limbs. And MyoD protein expression in gastrocnemius was demonstrated with immunohistochemistry and western blotting. Results : Obtained results were as follows; 1. Infarct volume was not attenuated by Dipsaci radix treatment in the MCAO rats. 2. At the affected-side hind limb of the MCAO rats, the increase of type-I fibers and the decrease of type-II fibers were induced by Dipsaci radix treatment. 3. At the affected-side hind limb of the MCAO rats, decreases of cross-sectioned areas of type-I and type-II fibers were attenuated by Dipsaci radix treatment. 4. At the affected-side hind limb of the MCAO rats, MyoD positive cells were increased by Dipsaci radix treatment. 5. At the affected-side hind limb of the MCAO rats, MyoD expressions were increased by Dipsaci radix treatment. Conclusions : These results suggest that Dipsaci radix has a protective effect against muscle atrophy, through the inhibition of the muscle cell apoptosis, following the central nervous system demage.

  • PDF