• Title/Summary/Keyword: Brain, blood flow

Search Result 265, Processing Time 0.024 seconds

Reduced Regional Cerebral Blood Flow in Patients with Traumatic Brain Injury Who Had No Structural Abnormalities on Magnetic Resonance Imaging : A Quantitative Evaluation of Tc-99m-ECD SPECT Findings (정상 MRI 소견을 보이는 외상성 뇌손상 환자에서 국소뇌혈류량의 이상)

  • Kim, Nam-Hee;Chung, Young-Ki
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • Background & Purpose:Neuropsychological disorders after traumatic brain injury(TBI) are poorly correlated with structural lesions detected by structural neuroimaging techniques such as computed tomography(CT) scan or magnetic resonance imaging(MRI). It is well known that patients with TBI have cognitive and behavioral disorders even in the absence of structural lesions of the brain. This study investigated whether there are abnormalities of regional cerebral blood flow(rCBF) in TBI patients without structural abnormality on MRI, using technetium 99m ethyl cysteinate dimer(Tc-99m-ECD) single photon emission computed tomography(SPECT) scans. Materials and Methods:Twenty-eight TBI patients without structural abnormality on MRI(mild, n=13/moderate, n=9/severe, n=6) and fifteen normal controls were scanned by SPECT. A voxel-based analysis using statistical parametric mapping(SPM) was performed to compare the patients with the normal controls. Results:rCBF was reduced in the right uncus and the right lateral orbitofrontal gyrus in the TBI patients. However, no increase of rCBF was noted in the patients in comparison to the normal controls. Conclusions:These results suggest that the TBI patients, even in the absence of structural lesion of the brain, may have dysfunction of the brain, particularly of the orbitofrontal and anterior pole of the temporal cortex. They also suggest that SPECT can be a useful method to identify brain dysfunctions in combination with structural brain imaging and neuropsychological tests.

  • PDF

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Implementation of Non-Invasive Pressurized Cerebral Perfusion Platform (가압식 비침습적 대뇌 혈류 증가 장치의 구현)

  • Lee, Jean;Yu, Hyung-gon;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1752-1760
    • /
    • 2017
  • One of the treatments and preventions of strokes such as ischemic stroke is to increase cerebral blood flow. This aims to minimize the size of the stroke by increasing the quantity of blood to the cerebral region circuitously. Several ways to increase cerebral blood flow are a therapy though drugs and through surgery. However these invasive method giving a burden to the patient, the problem of inducing a number of complications were noted. In this thesis, we propose a non-invasive brain flow enhancer to complement the disadvantages of such invasive treatment methods. To compensate for the shortcomings of the existing devices, the patient's blood pressure is accurately measured and the blood pressure is applied to the extremities, thereby increasing blood flow to the femoral region to produce blood clotting treatments. Although somewhat inadequate blood flow increases compared to conventional devices, blood flow can be significantly increased, which can be selectively.

Quantitative Evaluation of Regional Cerebral Blood Flow by Visual Stimulation in $^{99m}Tc-HMPAO$ Brain SPECT ($^{99m}Tc-HMPAO$ 뇌 SPECT에서 시각자극에 의한 국소 뇌 혈류변화의 정량적 검증)

  • Juh, Ra-Hyeong;Suh, Tae-Suk;Kwark, Chul-Eun;Choe, Bo-Young;Lee, Hyoung-Koo;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.166-176
    • /
    • 2002
  • Purpose: The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of $^{99m}Tc-HMPAO$ (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. Materials and Methods: The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and $^{99m}Tc-HMPAO$ SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the legion of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). Results: The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was $32.50{\pm}5.67%$. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Conclusion: Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

Saturable Disposition of Taurine in the Cerebrospinal Fluid of the Rat

  • Chung, Suk-Jae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.99-113
    • /
    • 1996
  • Taurine, a ${\beta}$-amino acid, plays an important role as a neuromodulator and is necessary for the normal development of the brain. Since de novo synthesis of taurine in the brain is minimal and in vivo studies suggest that taurine does not cross the blood-brain barrier, the blood-cerebrospinal fluid (CSF) barrier is likely to play a role in taurine transport between the central nervous system and the systemic circulation. Therefore, we examined in vivo elimination of taurine from the CSF in the rat to characterize in vivo kinetics of elimination for taurine from the CSF is consistent with the in vitro study. Using a stereotaxic device, cannulaes were placed into the lateral ventricle and the cisterna magna of the rat. Radio-labelled taurine and inulin (a marker of CSF flow) were injected into the lateral ventricle, and the concentrations of the labelled compounds in the CSF were monitored for up to 3 hrs in the cisterna magna. The apparent clearance of taurine from CSF was greater than the estimated CSF flow (p<0.005), indicating that there is a clearance process in addition to the CSF flow. Taurine distribution into the choroid plexus was at least 10 fold higher than that found in other brain areas (e.g., cerebellum, olfactory bulb and cortex). When unlabelled taurine was co-administered with radio-labelled taurine, the apparent clearance of the labeled taurine was reduced (p<0.01), suggesting a saturable disposition of taurine from CSF. Distribution of taurine into the choroid plexus, cerebellum, olfactory bulb and cortex was similarly diminished, indicating that the saturable uptake of taurine into these tissues is responsible for the non-linear disposition. A pharmacokinetic model involving first order elimination and saturable distribution described these data adequately. The Michaelis-Menten rate constant estimated from in vivo elimination study is similar to that obtained in the in vitro uptake experiment Collectively, our results demonstrate that taurine is transported in the choroid plexus via a taurine is cleared from the CSF via a saturable process. This process may be functionally relevant to taurine homeostasis in the brain.

  • PDF

Effect of PAF Antagonists on the Alterations in Cerebral Hemodynamics in Transient Cerebral Ischemia (PAF 길항제가 일과성 뇌허혈에 의한 뇌혈류역학 변동에 미치는 효과)

  • 이원석;고수연
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.234-241
    • /
    • 1999
  • The present study assessed the cerebroprotective effect of platelet-activating factor(PAF) antagonists in transient cerebral ischemia of rats. Right middle cerebral artery (MCA) of Sprague-Dawley rats was occluded for 2 hours using an intraluminal filament technique, and was reperfused for 6 hours following cerebral ischemia. The infarct area of seven coronal brain slices was measured morphometrically following stain ing in the 2% 2,3,5-triphenyltetrazolium chloride solution. The changes in regional cerebral blood flow (rCBF) and pial arteriolar diameter were measured by laser-Doppler flowmetry and by a videomicroscopy, respectively. The infarct size was significantly reduced by PAF antagonists, BN 52021 and CV-6209, which were administered i.p. 10 min before MCA occlusion. Pretreatment with PAF antagonists significantly restored the changes in pial arterial diameter as well as those in rCBF during the period of cerebral ischemia-reperfusion. PAF antagonists significantly inhibited the inducible nitric oxide synthase activity in the pial arteries ipsilateral to ischemia. These results suggest that PAF antagonists exert a cerebroprotective effect against ischemic brain damage through an improvement of postocclusive cerebral blood flow.

  • PDF

Effects of Jaeumgenby-tang adding Aurantii FructusㆍGastrodae Rhizoma on the Brain Cell and Changes of Cerebral Hemodynamics (자음건비탕가지각ㆍ천마가 뇌세포 및 뇌혈류역학 변동에 미치는 영향)

  • Im Gwang Mo;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • Jaeumgenby-tang(JGT) have been used in oriental medicine for many centuries as a therapeutic agent of vertigo caused by deficiency of qi(氣) and blood(血). Effect of Aurantii Fructus(AF) take off the phlegm by promoting the circulation of qi, Gastrodae Rhizoma(GR) has effects treating for headache, vertigo by calming the liver and suppressing hyperactivity of the liver-yang(陽). And, I designed to investigate whether injection of JGT adding AFㆍGR extract(JGTAG) affects cytotoxicity in vitro, cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD), mean arterial blood pressure(MABP)] in normal and cerebral ischemia rats by MCA occlusion method. The changes of rCBF and MABP were determinated by laser-doppler flowmetry(LDF), and the change of PAD was determinated by video microscope and width analyzer. The results were as follows in normal rats; JGTAG was not cytotoxicity in brain cells. And JGTAG was significantly increased rCBF, PAD and MABP. This results suggest that JGTAG increased significantly rCBF by dilating PAD. And the results were as follows in cerebral ischemic rats; The changes of rCBF and PAD were increased stably by treatment with JGTAG(10mg/kg, i.v.) during the period of cerebral reperfusion, and pretreatment with propranolol and indomethacin were increased JGT AG induced increase of rCBF and PAD during the period of cerebral reperfusion. We suggest that JGTAG has an anti-ischemic effect through the improvement of cerebral hemodynamics.

Estimation Method for Brain Activities are Influenced by Blood Pulsation Effect (Blood Pulsation의 효과가 뇌 활성화에 미치는 영향을 알아보는 방법)

  • Lee, W.H.;Ku, J.H.;Lee, H.R.;Han, K.W.;Park, J.S.;Kim, J.J.;Yoon, K.J.;Kim, I.Y.;Kim, S.I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.338-343
    • /
    • 2007
  • BOLD T2*-weighted MR images reflects cortical blood flow and oxygenation alterations. fMRI study relies on the detection of localized changes in BOLD signal intensity. Since fMRI measures the very small modulations in BOLD signal intensity that occur during changes in brain activity, it is also very sensitive to small signal intensity variations caused by physiologic noise during the scan. Due to the complexity of movement of various organs associated with heart beat, it is important to reduce cardiac related noise rather than other physiological noise which could be required with relatively simple method. Therefore, a number of methods have been developed for the estimation and reduction of cardiac noise in fMRI study. But, each method has limitation. In this study, we proposed a new estimation method for brain activities influenced by blood pulsation effect using regression analysis with blood pulsation signal and the correspond slice of fMRI. We could find out that the right anterior cingulate cortex and right olfactory cortex and left olfactory cortex were largely influenced by blood pulsation effect for new method. These observed areas are mostly on the structure of anterior cerebral artery in the brain. That is convinced with that our method would be valid and our new method is easier to apply in practice and reduce computational burden than the retrospective method.

Studies on the Regional Cerebral Blood Flow in Delayed Carbon Monoxide sequelae using $^{99m}Tc-HMPAO$ (지연성 일산화탄소중독후유증 환자에서 $^{99m}Tc-HMPAO$를 이용한 국소 뇌혈류량의 SPECT소견)

  • Ahn, Jae-Hoon;Lee, Do-Yun;Kim, Jin-Soo;Suh, Jung-Ho;Kim, Dong-Ik;Lee, Myung-Sik;Chung, Tae-Sub;Park, Chan-H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.22 no.2
    • /
    • pp.163-170
    • /
    • 1988
  • 8 patients of delayed CO sequelae were evaluated using Brain CT and $^{99m}Tc-HMPAO$ SPECT. The results were as follows; 1) CT findings of delayed CO sequleae were bilateral low density lesion in globus pallidus (l pt.), diffuse low density in white matter with bilateral low density in white matter (l pt.), diffuse low density in white matter with bilateral low density in globus pallidus (l pt.), diffuse low density in white matter with cortical atrophy (l pt.), bilateral low density in globus pallidus and diffuse low density in white matter with cortical atrophy (l pt.) and normal in 3 pts. 2) $^{99m}Tc-HMPAO$ Brain SPECT findings of delayed CO sequelae were decreased regional cerebral blood flow (rCBF) in frontal (1 among 8 pts.), frontal and basal ganglia (3 among 8 pts.), and diffuse patch decreased rCBF pattern (4 among 8 pts.) 3) $^{99m}Tc-HMPAO$ Brain SPECT study was well correlated with neurologic symptoms and signs in delayed CO sequelae. Our results may suggest that reduced cerebral blood flow contributes to the development of delayed CO sequelae.

  • PDF

The Simple in Vivo Evaluation Method for Blood-Brain Barrier Permeability of Drugs in Mice (생쥐에 있어서 약물의 혈액-뇌 관문 투과성 평가를 위한 간편한 in vivo 방법)

  • Kang, Young-Sook;Kim, You-Jung
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This study compared the permeability of $[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ through the blood-brain barrier (BBB) in mice and rats with common carotid artery perfusion (CCAP) method that modified internal carotid artery perfusion (ICAP) method. External carotid artery (ECA) was cannulated with coagulating pterygopalatine artery (PPA) in ICAP method, while CCA was cannulated without coagulating PPA in CCAP method. Also, for evaluation of BBB permeability of drugs in mice and rats, we used intravenous injection technique. The results of CCAP method in mice at a perfusion flow-rate of 2 ml/min, the brian volume of distribution $(V_D)$ of $[^{14}C]sucrose,\;[^3H]taurine,\;[^3H]phenylalanine,\;and\;[^3H]oxytocin$ were similar to the result of ICAP method in rats at perfusion flow rate of 4 ml/min. The area under the plasma concentration-time curve and brain uptake of $[^3H]taurine$ by intravenous injection technique, were $65.5{\pm}9.7%ID^*min/ml\;and\;0.515{\pm}0.093%ID/g$, respectively, in mice, and the corresponding values were $8.00{\pm}0.03%ID^*min/ml\;and\;0.052{\pm}0.003%ID/g$ in rats. But the BBB permeability surface-area product of $[^3H]taurine$ was similar between mice and rats. In conclusion, the CCAP method in mice was simple, fast and comparable to ICAP method in rats for drug permeability through the BBB.

  • PDF