• Title/Summary/Keyword: Bragg reflector

Search Result 103, Processing Time 0.023 seconds

The 607nm GaInP/AlInP Distributed Bragg Reflector Visible Laser Grown by Gas source Molecular Beam (GSMBE에 의한 단파장 GaInP/AIInP DBR 반도체 레이저 제작 및 특성)

  • ;;Katsumi Kishino;Yawara Kaneko
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.24-29
    • /
    • 1993
  • The 607 nm GaInP/AlInP distributed bragg reflector (DBR) lasers using the second order gratings period of 184.7 nm were fabricated by gas source molecular beam epitaxy (GSMBE) and the conventional holographic method. GaInP/AlInP DBR lasers show single mode operations up to 1.8 times the threshold currents with a wavelength of 607 nm at 140 K and a wavelength shift of 0.033 nm/K is observed. No mode hopping was found in the temperature ranging from 120 to 165K.

  • PDF

High-Q factor ZnO-based Film Bulk Acoustic Resonator Devices

  • Yoon, Gi-Wan;Mai, Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.61-65
    • /
    • 2008
  • In this paper, we studied a ZnO-based film bulk acoustic resonator (FBAR) device fabricated on a specially designed multi-layerd Bragg reflector part. Very thin chromium adhesion layers (0,03um thick) were additionally deposited to improve the quality of the Bragg reflector and some thermal treatments were performed to improve the resonant characteristics of the device. At the operating frequency of ${\sim}2.7GHz$, excellent resonant characteristics were observed in terms of return loss and quality factor, and effective electromechanical coupling coefficient. These findings are expected to be highly promising and effective for improving the performance of the FBAR devices at high frequency.

  • PDF

Thermal Improvements for 2.75 GHz-FBAR Devices

  • Mai, Linh;Lee, Jae-Young;Pham, Van-Su;Kabir, S. M. Humayun;Dong, Hoai-Bac;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.196-199
    • /
    • 2007
  • In this paper, we studied a ZnO-based film bulk acoustic wave resonator (FBAR) device fabricated on top of a novel multi-layered Bragg reflector with chromium adhesion layers $(0.03{\mu}m-thick)$ inserted. The performance of FBAR device could be significantly improved using proper thermal treatments. At ${\sim}2.75$ GHz, we could achieve good return loss and quality factor (Q). This device fabrication technique will be useful for the future mobile WiMAX applications.

  • PDF

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender;Park, Si-Hyun
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.544-550
    • /
    • 2017
  • This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

Film Bulk Acoustic Resonator(FBAR) using Bragg Reflector for IMT-2000 Bandpass Filter (Bragg 반사층을 이용한 IMT-2000 대역통과필터용 체적 탄성파 공진기)

  • 김상희;김종헌;박희대;이시형;이전국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.377-382
    • /
    • 2000
  • Film bulk acoustic resonator (FBAR) using AIN reactively sputtered at room temperature was fabricated. The FBAR is composed of a piezoelectric aluminium nitride thin film, top electrode of Al and bottom electrode of Au connected by a short (200${\mu}{\textrm}{m}$) transmission line on both sides and reflector layers of SiO$_2$- W Pair. The active areas of Al and Au were patterned using 150${\mu}{\textrm}{m}$ diameter shadow mask. The series resonance frequency (fs) and the parallel resonance frequency (fp) were measured at 1.976 GHz and 2.005 GHz, respectively. The minimum insertion loss and return loss were 6.1 dB and 37.19 dB, and the quality factor (Q) was 4261.

  • PDF

Detection of Voletile Organic Compounds by Using DBR Porous Silicon (DBR 다공성 실리콘을 이용한 휘발성 유기화합물의 감지)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • Recently, number of studies for porous silicon (PSi) have been investigated by many researchers. Multistructured porous silicon such as a distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by using an electrochemical etch of $P{^+}{^+}$-type silicon wafer with resistivity between 0.1 and $10m{\Omega}cm$. The electrochemical etch with square wave current density results in two different refractive indices in the porous layer. In this work, DBR porous silicon chips for a simple and portable organic vapor-sensing device have fabricated. The optical characteristics of DBR PSi have been investigated. DBR porous silicon have been characterized by FT-IR and Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to organic vapor at room temperature.

  • PDF

Amplitude Modulation Response and Linearity Improvement of Directly Modulated Lasers Using Ultra-Strong Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers

  • Sung, Hyuk-Kee;Wu, Ming C
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2008
  • Directly modulated fiber-optic links generally suffer higher link loss and larger signal distortion than externally modulated links. These result from the electron-photon conversion loss and laser modulation dynamics. As a method to overcome the drawbacks, we have experimentally demonstrated the RF performance of directly modulated, ultra-strong injection-locked gain-lever distributed Bragg reflector (DBR) lasers. The free-running DBR lasers exhibit an improved amplitude modulation efficiency of 12.4 dB under gain-lever modulation at the expense of linearity. By combining gain-lever modulation with ultra-strong optical injection locking, we can gain the benefits of both improved modulation efficiency from the gain-lever effect, plus improved linearity from injection locking. Using an injection ratio of R=11 dB, a 23.4-dB improvement in amplitude response and an 18-dB improvement in spurious-free dynamic range have been achieved.

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.