• 제목/요약/키워드: Bragg peak

검색결과 110건 처리시간 0.022초

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

중하전입자 치료의 이론적 배경과 양성자에 대한 몬테칼로 시뮬레이션 (Theoretical Background on Heavy Charged Particle Therapy and Proton Monte Carlo Simulation)

  • 이정옥;이상공;김종일;정동혁;문성록;강정구
    • 한국의학물리학회지:의학물리
    • /
    • 제8권1호
    • /
    • pp.47-52
    • /
    • 1997
  • 양성자나 알파입자와 같은 무거운 하전입자가 매질 속을 진행하는 경우에 매질과 상호작용 하여 일어날 수 있는 물리적인 현상을 알아보기 위하여 몬테칼로 기법을 이용하여 시뮬레이션 하였다. 양성자선의 Bragg peak가 에너지의 증가에 따라 물 속에서 깊어짐을 확인하였다. 이러한 Bragg peak 현상을 방사선치료에 이용할 경우에 표적 조직의 흡수선량이 광자와 전자선에 비하여 국소화 되고 주변조직의 보호효과가 탁월함을 알 수 있었다.

  • PDF

Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화 (Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4)

  • 김유미;천권수
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.401-408
    • /
    • 2021
  • 양성자 치료는 방사선치료 중 하나로 브래그 피크로 알려진 물리적 특성을 활용한 방법이다. 양성자 치료계획 수립 시 주로 전산화단층촬영(CT)의 인체 횡단면 영상이 사용되고 있다. CT는 사용되는 관전압에 따라 HU가 변하게 되며 이는 구조물의 경계, 두께 변화로 이어진다. 본 연구는 Geant4를 이용하여 복합 물질로 구성된 두개골 팬텀에서 두께 변화에 따른 뇌 영역의 브래그 곡선의 변화를 살펴보았다. 먼저, 단일 물질로 구성된 팬텀에서 매질의 종류와 양성자의 입사에너지에 따른 브래그 곡선을 측정하여 Geant4 계산결과의 신뢰성을 확보하였다. 두개골 팬텀의 각 두께를 변동하였을 때 뇌 영역에서 발생하는 피크의 위치변화를 측정하였다. 연부조직의 두께를 변화하였을 때 피크의 위치 변화는 나타나지 않았으며, 피부의 두께를 변화하였을 때 피크의 변화는 적었으며, 주로 뼈의 두께를 변화할 때 피크의 위치 변화가 나타났다. 또한 뼈를 단독으로 변화하였을 때와 뼈를 다른 조직과 함께 변화하였을 때 피크의 위치 변화량은 동일하였다. 뼈의 정확한 두께 측정이 방사선치료계획의 선량-깊이 분포 예측에 주요 인자 중 하나임을 확인하였다.

Uniform-fiber-Bragg-grating-based Fabry-Perot Cavity for Passive-optical-network Fault Monitoring

  • Xuan, Zhang;Ning, Ning;Tianfeng, Yang
    • Current Optics and Photonics
    • /
    • 제7권1호
    • /
    • pp.47-53
    • /
    • 2023
  • We propose a centralized passive-optical-network monitoring scheme using the resonance-spectrum properties of a Fabry-Perot cavity based on fiber Bragg gratings. Each cavity consists of two identical uniform fiber Bragg gratings and a varying cavity length or grating length, which can produce a unique single-mode resonance spectrum for the drop-fiber link. The output spectral properties of each cavity can be easily adjusted by the cavity length or the grating length. The resonance spectrum for each cavity is calculated by the transfer-matrix method. To obtain the peak wavelength of the resonance spectrum more accurately, the effective cavity length is introduced. Each drop fiber with a specific resonance spectrum distinguishes between the peak wavelength or linewidth. We also investigate parameters such as reflectivity and bandwidth, which determine the basic performance of the fiber Bragg grating used, and thus the output-spectrum properties of the Fabry-Perot cavity. The feasibility of the proposed scheme is verified using the Optisystem software for a simplified 1 × 8 passive optical network. The proposed scheme provides a simple, effective solution for passive-optical-network monitoring, especially for a high-density network with small end-user distance difference.

Eelectro-optic Behavior of Opal-LC Photonic Crystals

  • Kang, Dae-Seung
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.19-22
    • /
    • 2001
  • In this paper, we describe the electro-optic effects of photonic crystals made of a synthetic opal filled with a nematic liquid crystal(LC). By applying an external electric field, a shift in the Bragg reflection peak position(stop band) and a field-induced change in its peak reflectivity are observed. These significant surface alignment effects of the opal-LC composite are discussed in a similar manner for Freederick-type transitions of LC within a confined geometry in the presence of external fields.

  • PDF

Preparation and Characterization of Flexible Optical Composite Films Based on Bragg-Structured Interferometer

  • Um, Sungyong;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.244-250
    • /
    • 2013
  • Three types of functionalized flexible optical composite films based on Bragg structure porous silicon interferometer have been successfully fabricated by casting a toluene solution of polystyrene onto the free-standing porous silicon. The optical properties of composite films are measured. Surface functionalization of porous silicon is determined by FT-IR measurement. Reflectance and transparence properties of composite films are measured for the possible application of tunable optical filter and indicate that the transmission peak occurred at the identical location where the reflection peak appeared.

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰 (Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

양성자치료계획을 위한 이중에너지 전산화단층촬영 잡음 제거 영상 기반 저지능비 추정 방법 (Stopping Power Ratio Estimation Method Based on Dual-energy Computed Tomography Denoising Images for Proton Radiotherapy Planning)

  • 조병두
    • 한국방사선학회논문지
    • /
    • 제17권2호
    • /
    • pp.207-213
    • /
    • 2023
  • 전산화단층촬영(computed tomography, CT) 영상은 양성자 브레그 피크 위치 추정 및 치료 계획 시뮬레이션의 기초로 사용된다. Hounsfield Unit(HU) 기반의 양성자 저지능비(stopping pwer ratio, SPR) 예측 과정에서 환자의 밀도와 원소 구성의 작은 차이로 양성자 빔의 경로를 따라 브레그 피크 위치의 불확실성이 발생한다. 본 연구에서는 브레그 피크 위치 예측 불확실성 감소를 위하여 이중에너지 전산화단층촬영 영상 기반의 양성자 저지능비 예측 정확도의 잠재력을 연구를 하였다. 양성자 빔의 저지능비를 추정하기 위해 전산화단층촬영 시스템(Somatom Definition AS, Siemens Health Care, Forchheim, Germany)을 이용하여 전자밀도팬텀(CIRS Model 062M electron density phantom, CIRS Inc., Norfolk, VA, USA)의 단일에너지 및 이중에너지 영상을 획득하였다. 이를 검증하기 위해 미국 국립 표준기술 연구소(National Institute of Standards and Technology, NIST)에서 제공하는 표준 데이터를 통하여 추정한 실제 저지능비와 비교하였다. 그 결과 잡음이 제거된 이중에너지 영상 기반 방법을 통한 양성자 빔의 저지능비 예측에서 정확도 개선 가능성을 확인할 수 있었으며, 인체의 다양한 밀도와 원소 구성을 가진 대체물을 더욱 다양하게 제작하여 저지능비를 예측 할 경우 더욱 향상된 양성자의 브레그 피크 위치 예측이 가능할 것으로 사료된다.

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.