DOI QR코드

DOI QR Code

Uniform-fiber-Bragg-grating-based Fabry-Perot Cavity for Passive-optical-network Fault Monitoring

  • Xuan, Zhang (College of Electronic Science and Engineering, University of Electronic Science and Technology of China) ;
  • Ning, Ning (College of Electronic Science and Engineering, University of Electronic Science and Technology of China) ;
  • Tianfeng, Yang (College of Physics and Electronic Engineering, Sichuan Normal University)
  • Received : 2022.08.17
  • Accepted : 2022.12.02
  • Published : 2023.02.25

Abstract

We propose a centralized passive-optical-network monitoring scheme using the resonance-spectrum properties of a Fabry-Perot cavity based on fiber Bragg gratings. Each cavity consists of two identical uniform fiber Bragg gratings and a varying cavity length or grating length, which can produce a unique single-mode resonance spectrum for the drop-fiber link. The output spectral properties of each cavity can be easily adjusted by the cavity length or the grating length. The resonance spectrum for each cavity is calculated by the transfer-matrix method. To obtain the peak wavelength of the resonance spectrum more accurately, the effective cavity length is introduced. Each drop fiber with a specific resonance spectrum distinguishes between the peak wavelength or linewidth. We also investigate parameters such as reflectivity and bandwidth, which determine the basic performance of the fiber Bragg grating used, and thus the output-spectrum properties of the Fabry-Perot cavity. The feasibility of the proposed scheme is verified using the Optisystem software for a simplified 1 × 8 passive optical network. The proposed scheme provides a simple, effective solution for passive-optical-network monitoring, especially for a high-density network with small end-user distance difference.

Keywords

Acknowledgement

National Natural Science Foundation of China (NSFC 61901289).

References

  1. K. Nishimoto, T. Tochino, T. Hatano, K. Asaka, J.-I. Kani, and J. Terada, "Mini-PON: disaggregated module-type PON architecture for realizing various PON deployments," J. Opt. Commun. Netw. 12, 89-98(2020). https://doi.org/10.1364/JOCN.383717
  2. A. Usman, N. Zulkifli, M. R. Salim, K. Khairi, and A. I. Azmi, "Optical link monitoring in fibre-to-the-x passive optical network (FTTx PON): A comprehensive survey," Opt. Switch. Netw. 39, 100596 (2020).
  3. C. DeSanti, L. Du, J. Guarin, J. Bone, and C. F. Lam, "SuperPON: an evolution for access networks [Invited]," J. Opt. Commun. Netw. 12, D66-D77 (2020). https://doi.org/10.1364/JOCN.391846
  4. Y. Zhang, B. Liu, J. Ren, X. Wu, and X. Wang, "Flexible probabilistic shaping PON based on ladder-type probability model," IEEE Access 8, 34170-34176 (2020). https://doi.org/10.1109/access.2020.2974620
  5. D. Pastor, K. Jamshidi, and C.-A. Bunge, "Physical layer monitoring based on 2D-OCDMA concepts and electronic decoding for high density PON networks," in Proc. 17th International Conference on Transparent Optical Networks (Budapest, Hungary, Jul. 5-9, 2015), paper no. We.C1.5.
  6. M. M. Rad, K. Fouli, H. A. Fathallah, L. A. Rusch, and M. Maier, "Passive optical network monitoring: challenges and requirements," IEEE Commun. Mag. 49, S45-S52 (2011). https://doi.org/10.1109/MCOM.2011.5706313
  7. K. Lee, S. B. Kang, D. S. Lim, H. K. Lee, and W. V. Sorin, "Fiber link loss monitoring scheme in bidirectional WDM transmission using ASE-injected FP-LD," IEEE Photonics Technol. Lett. 18, 523-525 (2006). https://doi.org/10.1109/LPT.2005.863991
  8. J. Park, J. Baik, and C. Lee, "Fault-detection technique in a WDM-PON," Opt. Express 15, 1461-1466 (2007). https://doi.org/10.1364/OE.15.001461
  9. M. A. Esmail and H. Fathallah, "Novel coding for PON fault identification," IEEE Commun. Lett. 15, 677-679 (2011). https://doi.org/10.1109/LCOMM.2011.041811.101805
  10. X. Zhou, F. D. Zhang, M. Sun, C. Pan, X. Sun, "A modified optical coding monitoring scheme in PON with electronic decoding processing," IEEE Commun. Lett. 17, 1849-1851 (2013). https://doi.org/10.1109/LCOMM.2013.090213.131501
  11. X. Zhang, S. Chen, F. Lu, X. Zhao, M. Zhu, and X. Sun, "Remote coding scheme using cascaded encoder for PON monitoring," IEEE Photonics Technol. Lett. 28, 2183-2186 (2016). https://doi.org/10.1109/LPT.2016.2586965
  12. X. Zhou, F. Zhang, and X. Sun, "Centralized PON monitoring scheme based on optical coding," IEEE Photonics Technol. Lett. 25, 795-797 (2013). https://doi.org/10.1109/LPT.2013.2251622
  13. X. Zhang, T. Yang, and X. Jia, "PON monitoring scheme using wavelength-bandwidth identification of a single fiber Bragg grating," IEEE Photonics Technol. Lett. 33, 387-390 (2021). https://doi.org/10.1109/LPT.2021.3065196
  14. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiro, J. L. Cruz, and M. V. Andres, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings," Opt. Express 14, 6394-6399 (2006). https://doi.org/10.1364/OE.14.006394
  15. T. Erdogan, "Fiber grating spectra," J. Light. Technol. 15, 1277-1294 (1997). https://doi.org/10.1109/50.618322
  16. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, MA, USA. 2009).
  17. C.-G. Lu, Y. P. Cui, Z.-Y. Wang, and B.-F. Yun, "A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating," Acta Physica Sinica 53,145-150 (2004). https://doi.org/10.3321/j.issn:1000-3290.2004.01.027