• Title/Summary/Keyword: Bragg Grating Sensors

Search Result 207, Processing Time 0.02 seconds

Health Mornitoring of Spatial Structure by Optical FBG Sensor (광섬유센서를 이용한 대공간 구조물의 상시 모니터링)

  • Lee, Chang-Woo;Lee, Seung-Jae;Ju, Gi-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.49-55
    • /
    • 2007
  • In this paper, always monitoring system of fiber Bragg Crating(FBG)Sensor is described and FBGs are well suited for measuring the movement in the part of the spatial structure(for example, cable, membrane and so on)under the pressure conditions. In order to measure the movement of long span structure, we need the measurable equipment that takes in many spots to measure. In the result of experiment, the fiber sensors showed good response to the pressure conditions. Therefore, We could calculate the movement of spatial structure and be possible health monitoring of the spatial structure.

  • PDF

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Self Sensing Reinforcement Combined with Fiber-Optic Sensor and FRP Strip for Structural Reinforcement (구조물 보강용 FRP 판과 광섬유 센서가 결합된 자기감지 보강재)

  • Song, Se-Gi;Seo, Soo-Yeon;Kim, Kang Su
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.123-130
    • /
    • 2019
  • Recently, it is required to develop a monitoring technology that combines an FBG sensor as a means for continuously monitoring whether reinforcing effect of FRP is maintained on FRP reinforced structural members. However, most existing researches focus on the insertion of FBG sensors into bar-shaped FRPs, and there is insufficient study on the details strip-type FRPs combined with FBG sensors. Therefore, in this paper, it is studied to develop a reinforcement in which a FBG sensor is combined with a FRP strip. Especially, combination of FRP and FBG sensor. For this, a series of experiments were performed to find the adhesive strength of fiber-FRP-epoxy joints, the tensile strength of FBG sensor part with reflection-lattice, and the performance depending on the connection method of FRF and FBG sensor. As a result of the study, it was found that a minimum strength of $216.15N/mm^2$ is required for incorporating FBG sensors in FRP using epoxy. It is considered that the adhesion length of epoxy joints should be more than 50mm. When the FBG sensor is attached to the FRP strip as an epoxy, it is considered appropriate to use the complete attachment and the sensor non-attachment method.

Earthquake Movement Measurement of the Top of Bridge Pier Using Fiber Optic Smart Structure Concept (광섬유 스마트 구조물의 개념을 이용한 교량상부 내진거동 측정)

  • Kim Ki-Soo;Han In-Dong
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well-suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

Study on the Self Diagnosis of Reinforced Concrete Beam Retrofitted by Composite Materials with Optical Fiber Sensors (광섬유 센서를 이용한 복합재료로 보수보강된 철근콘크리트 보의 자기진단 기법개발)

  • 김기수;신영수;김종우;전재홍;조윤범
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Retrofitted concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, We try to detect peel out effect and find the strain difference between main structure and retrofitting patch material when they separate each other.

  • PDF

Estimation of displacement responses of a suspension bridge by using mode decomposition technique (모드분해기법을 이용한 현수교의 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik;Kim, Ho-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.320-325
    • /
    • 2009
  • In this study, a method to estimate the suspension bridge deflection is developed using mode decomposition technique. In order to examine the suspension bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. However, it is recognized that any measurement of movement for suspension bridges may be difficult for the absence of proper methods to measure the displacement response on site. This study aims at suggesting a method to estimate the displacement response from the measured strain signals in an indirect way to predict the displacement response, not a direct way to measure the displacement response. Additionally, by applying the FBG sensors with multi-point measurements not influenced by electric noise, it can be expected that the technique would be applicable to infrastructures.

  • PDF

Sweeping Automatic Linearization for Wavelength Swept Laser Used in Structure Safety Monitoring (구조물 안전 모니터링용 파장 스위핑 레이저를 위한 스위핑 자동 선형화)

  • Lee, Duk-Kyu;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, a novel method for sweeping automatic linearization of wavelength swept laser is proposed. Through the test performed on the implemented laser, the linear sweeping is held up well with a 97% decrease in nonlinearity, and 60 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The proposed method uses fiber Bragg grating array, optical-electronic conversion circuit, FPGA embedded module, and a LabVIEW program to generate new compensated wave patterns which were applied to the fiber Fabry-Perot tunable filter. Linear sweeping can reduce the cumbersome and time-consuming recalibration process required for nonlinear sweeping. Additionally, the proposed method provides more accurate measurement results for the structure safety monitoring system.

A study on the low-frequency of acoustic sensor using single mode FBG (Fiber Bragg Grating). (단일모드 광섬유 브래그 격자를 이용한 저주파수 대역의 음향 센서에 관한 연구)

  • Kim, Kyung-Bok;Kwack, Kae-Dal
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.396-403
    • /
    • 2000
  • The low- frequency acoustic sensor using the recently developed FBG has an excellent merits which the existing fiber-optic sensor has and also it has an excellent signal sensing effect in the environment of low-frequency($30Hz{\sim}300Hz$). Furthermore, we can expect the utilization of low-frequency signal defection instead of existing microphones in the environment of electric noise and also it can be developed as the high-sensibility multiplexing through the sensor array system.

  • PDF