• Title/Summary/Keyword: Bragg반사

Search Result 131, Processing Time 0.028 seconds

Optical Temperature Sensor Based on the Etched Planar Waveguide Bragg Grating Considering Linear Thermo-optic Effect (평면 광도파로 상의 식각 브래그 격자를 이용한 광온도 센서의 개발)

  • Kook-Chan Ahn;Sang-Mae Lee
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating, investigation of the grating reflection characteristics, and temperature measurement capabilities. The typical bandwidth and reflectivity of the surface etched grating has been ~0.2nm and ~7%, respectively, at a wavelength of ~1552nm. The temperature-induced wavelength change of the optical sensor is found to be slightly non-linear over ~20$0^{\circ}C$ temperature range. Theoretical models for the grating response of the sensor based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Structure characteristics of $SiO_2$ thin film of the FBAR Bragg reflector (FBAR 소자의 Bragg 반사층의 $SiO_2$ 박막 특성에 관한 연구)

  • Lee, Soon-Bum;Park, Sung-Hyun;Lee, Neung-Heon;Shin, Young-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.377-378
    • /
    • 2005
  • In this study, $SiO_2$ thin film was deposited on variable conditions of the RF power and working pressure by RF magnetron sputtering to apply to the Bragg reflector of the SMR type FBAR device. A crystal orientation and microstructure of $SiO_2$ thin film was studied by using the XRD, AFM and SEM. The best condition was obtained through analyzing the structural characteristics of thin film. Finally, FBAR device was fabricated with applying the best condition of $SiO_2$ thin film and the resonant characteristics was investigated by network analyzer to verify application possibility as a efficient device.

  • PDF

Design and Analysis of U-shaped Sampled Grating Distributed Bragg Reflector Lasers (U형 Sampled Grating DBR 레이저 다이오드의 설계 및 분석)

  • Kim, Kyoungrae;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.229-235
    • /
    • 2017
  • A widely tunable U-shaped SGDBR (Sampled Grating Distributed Bragg Reflector) laser diode is designed and analyzed by means of a time-domain simulation. The U-shaped SGDBR laser diode consists of SGDBR, active, phase, and TIR (Total Internal Reflection) mirror sections, so the coupling losses across the sections should be carefully considered. The tuning range of the designed U-shaped SGDBR laser is about 1525-1570 nm, which is confirmed by the simulation. The simulation results show that the loss in the TIR mirror region should be less than about 2 dB, and the refractive-index difference at the butt coupling between the passive and active regions should be less than 0.1, to provide the complete tuning range.

경사입사각증착법을 이용한 이산화 티타늄 박막 기반의 고반사 분포 브래그 반사기 제작 및 특성

  • Guan, Xiang-Yu;Im, Jeong-U;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.350.1-350.1
    • /
    • 2014
  • 분포 브래그 반사기(distributed Bragg reflector; DBR)는 광센서, 도파로, 태양전지, 반도체 레이저 다이오드, 광검출기와 같은 고성능 광 및 광전소자 응용분야에 널리 사용되고 있다. 일반적으로, DBR은 박막의 두께를 4분의 1 파장(${\lambda}/4$)으로 가지는 서로 다른 저굴절율 물질과 고굴절율 물질을 교대로 적층 (pair)한 다중 pair로 제작되어지며, DBR의 반사 특성과 반사대역폭은 두 물질의 굴절율 차이와 pair의 수에 영향을 받는다. 그러나, 서로 다른 굴절율을 갖는 두 물질을 이용하는 DBR의 경우, 두 물질간 열팽창계수의 불일치, 접착력 문제, 높은 굴절율 차이를 갖는 물질 선택의 어려움 등 많은 문제점을 지니고 있다. 최근, 경사입사각증착법을 이용한 동일 재료(예, 인듐 주석 산화물, 게르마늄, 실리콘)기반의 DBR 제작 및 특성에 대한 연구가 보고되고 있다. 높은 입사각을 갖고 박막이 증착될 경우, 저율을 갖는 다공박막 제작이 가능하여 경사입사각증착법으로 homogeneous 물질 기반의 고반사 특성을 갖는 다중 pair의 DBR을 제작할 수 있다. 본 실험은, 갈륨비소 기판 위에 경사입사각증착법 및 전자빔증착법을 이용하여 중심파장 960 nm가 되는 이산화 티타늄 기반의 DBR을 제작하였고, 제작된 샘플의 증착된 박막의 표면 및 단면의 프로파일은 주사전자현미경을 사용하여 관찰하였으며, UV-Vis-NIR 스펙트로미터를 이용하여 반사율 특성을 조사하였다.

  • PDF

Multi-Point Optical Fiber Grating Strain Sensor System (광섬유 격자 다중화 스트레인 센서 시스템)

  • Lee, Yong-Wook;Jung, Jae-Hoon;Chung, Seung-Hwan;Lee, Byoung-Ho;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.147-151
    • /
    • 2001
  • An optical fiber sensor is capable of nondestructive measurement of a structure and it has an advantage of the immunity to electromagnetic interference because light is not affected by electromagnetic wave. In addition, if optical fibers are buried in an object like a concrete, this sensor tan analyze defects and physical status of the object without disassembling it. Especially, the fiber Bragg grating sensor is a promising optical fiber sensor capable of nondestructive test of such an object. A fiber Bragg grating has the characteristics of reflecting or blotting light of a specific wavelength. If we apply physical quantity like strain to the fiber Bragg grating, the center wavelength of the reflected light is shifted and then we can find the physical quantity applied to the fiber Bragg grating by measuring the center wavelength shift of the reflected light. The fiber Bragg grating sensor capable ot static and dynamic strain measurement is being used in health-monitoring of buildings, structures, etc. Recently increasing is interest in dynamic strain measurement inevitable to the civil structures such as roads and bridges. In this study we implemented the optical fiber sensor system which can measure dynamic strain at multiple points using Fabry-Perot wavelength demodulation. And we measured the static and dynamic strain using this sensor system with a test structure(cantilever). Measurement results were similar to those obtained with the conventional electrical measurement methods.

  • PDF

Theoretical Analysis of Bragg-Reflector Type FBAR with Resonance Mode (공진 모드에 따른 Bragg-Reflector Type FBAR 의 이론적 분석)

  • 조문기;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.9-18
    • /
    • 2003
  • Two configurations of Film Bulk Acoustic Wave Resonators with acoustic quater-wave bragg reflector layers are theoretically analyzed using equivalent circuits and the difference of their characteristics are discussed. We compare the characteristics of λ/2 mode to those of ideal FBAR with top and bottom electrode contacting air and the characteristics of λ/4 mode to those of ideal FBAR with top electrode contacting air and bottom electrode clamped. We assume that the piezoelectric film is ZnO, the electrode is A1 and the substrate is Si, ABCD parameters are extracted and input impedance is calculated by converting the equivalent circuit from Mason equivalent circuits to the simplified equivalent circuits that ABCD parameters are extracted possible, From the variation of resonance frequency due to the change of thickness of reflector layers and the variation of electrical Q due to the change of mechanical Q of reflector layers, it is confirmed that the reflector layer just under the bottom electrode have the greatest effect on the varation of resonance frequency and electrical Q. It is shown that the number of reflector layers required for the saturation of electrical Q decreases with the increase of the impedance ratio of reflector layers and electrical Q of λ/2 mode is larger than that of λ/4 mode, Electromechanical coupling factor is independent of the number of layers, The impedance ratio of reflector layers becomes larger as the electromechanical coupling factor becomes larger, The electromechanical coupling factor of the two mode are smaller than those of ideal FBARs because of the trapping of acoustic energy in the reflector layers, The insertion loss of the ladder filter decreases with the increase of the number of reflector layers but the bandwidth is not affected much by the number of reflector layers, As the impedance ratio of reflector layers becomes larger the insertion loss becomes smaller and the bandwidth becomes wider, In our analysis of the two mode, characteristics of λ/2 mode appear to be slightly more favorable than that of λ/4 mode

Reflection Signal Analysis for Time Division Multiplexing of Fiber Optic FBG Sensors (광섬유 FBG 센서의 시간 분할 다중화를 위한 반사 신호의 분석)

  • Kim, Geun-Jin;Kwon, Il-Bum;Yoon, Dong-Jin;Hwang, Du-Sun;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • Fiber optic sensor using fiber Bragg grating(FBG) probes is used for monitoring strain and temperature distributed on the wide surfaces of large structures. In this paper, in order to use many FBG probes in one optical fiber line, we propose a complex multiplexing technology which is composed of two techniques, one is time division multiplexing and another is wavelength division multiplexing. However, we only investigate the characteristics of time division multiplexing because FBG sensors basically can be operated by wavelength division multiplexing. We calculate the optimal reflectivities and the lengthwise location of five FBG probes in serial connection in order to obtain the unique reflected intensities from the FBG probes. We fabricate five FBG probes with the reflectivities of 13%, 16%, 25%, 40% and 80%, which are determined by the theoretical calculation, and observe the signal reflected from each FBG in the time domain from the experiment. There are differences between experimental and theoretical results caused by the signal noise and the differences of reflectivities of FBG probes. But the experimental results shows the reflected signals of five FBG probes which prove the availability of complex multiplexing.

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.