• Title/Summary/Keyword: Bracket mounting method

Search Result 6, Processing Time 0.019 seconds

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

Dynamic Analysis of Compressor Mounting Bracket using FRF-based Substructuring Method (전달함수합성법을 이용한 차량용 에어컨 컴프레서 브라켓의 동특성 해석)

  • Chung, Hong-Suk;Seo, Se-Young;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.194-200
    • /
    • 2000
  • Researches on the FRF-based substructuring method have been mainly focused on vibratory response analysis. Present study is concerned about the application of the method to the dynamic stress analysis of a compressor mounting bracket in a passenger car. This is performed by using reaction forces that can be obtained by the FRF-based substructuring method. The air-conditioner system, composed of a compressor, a bracket and a test jig, is analyzed by using the FRF-based substructuring method. The experimental and numerical FRFs are combined to calculate the system responses and reaction forces at the connection point. The dynamic reaction forces plugged into the bracket FE model to compute the compute the stresses of the bracket. Dynamic stresses by the present method are compared with those from FE model. The comparison shows possibility of practical usage of the method for the real problem.

  • PDF

Dynamic Stress Analysis of Structural Connection using FRF-based Substructuring Method (구조물의 연결부에서 전달함수합성법을 이용한 동응력 해석)

  • 공태식;김찬묵;이두호;서세영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1195-1201
    • /
    • 2002
  • Researches on the FRF-based substructuring method have been mainly focused on vibratory response analysis. Present study Is concerned about the application of the method to the dynamic stress analysis of a air-conditioner compressor mounting bracket in a passenger car. This is performed by using reaction forces that can be obtained by the FRF-based substructuring method. The air-conditioner system, composed of a compressor and bracket, Is analyzed by using the FRF-based substructuring method. The experimental and numerical FRFs are combined to calculate the system responses and reaction forces at the connection point. The dynamic reaction forces plugged into the bracket FE model to compute the stresses of the bracket Dynamic strains by the present method are compared with those from strain-gage test for bracket system on shaker. The comparison shows possibility of practical usage of the method for the real problem

  • PDF

Research on Improved Formability of High-Strength Steel Mounting Brackets and Springback Prediction (고강도강 마운팅브라켓의 성형성 향상 및 스프링백 예측에 관한 연구)

  • Lim, Kyu-seong;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.14-22
    • /
    • 2022
  • To reduce the weight of the car and ensure the safety of the driver while driving, the existing 440 MPa-class mounting bracket was treated at 590MPa to improve collision safety and secure the weight of the vehicle body. The following conclusions were drawn from the tensile test, forming analysis, and springback prediction. In the formability and springback analyses using FLD, it could be confirmed that bending was an essential process because the formability and flatness were much better when bending was added than when bending was not applied. Based on the research results, it was deduced that the mold design was necessary so that the molding was carried out at a strain rate of 20% or less for stable molding.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.