• Title/Summary/Keyword: BrAC

Search Result 24, Processing Time 0.028 seconds

On the UV Spectra of AcBr Lignins from Softwoods grown in Mt. Jiri (지리산산(智異山産) 침엽수재(針葉樹材) AcBr Lignin의 UV Spectra에 대(對)하여)

  • Jo, Jong-Soo;Moon, Chang-Kuck
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.35-40
    • /
    • 1984
  • The ultraviolet absorption spectra of AcBr lignin (Acetyl Bromide lignin) from 10 species grown in Mt. Jiri were determined. There were 3 peak positions, at 249nm (max peak), at 267-268 nm (shallow min. peak) and at 280 nm (lower max. peak). The Bjorkman lignin and lignin sulfonic acid spectra had shoulders, but the AcBr lignin had not them. Average absorbances and absorptivities of the AcBr lignins at peak positions were $0.367{\pm}0.0015$, $24.56{\pm}0.0535$, at 249 nm, $0.278{\pm}0.0016$, $18.50{\pm}0.0569$, at 267-268 nm and $0.306{\pm}0.0016$, $20.42{\pm}0.0627$ at 280 nm, respectively.

  • PDF

A Study on the Change of Contrast Sensitivity with Breath Alcohol Concentration in Various Luminance (다양한 휘도에서 호흡 알코올 농도에 따른 대비감도 변화 연구)

  • Nam, Soo-Kyung;Jung, Su A;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.505-511
    • /
    • 2014
  • Purpose: This study was to investigate the effect of breath alcohol concentration (BrAC) increase with drinking alcohol on contrast sensitivity in the conditions of restricted BrAC. Methods: 23 males in 20s (average age $21.17{\pm}2.19$ years, body mass index (BMI) $22.09{\pm}2.16$) were selected and administered the amount of alcohol to reach 0.05% and 0.08% BrAC calculated by BAC (blood alcohol concentration) Dosing Software program, which was developed as basis of Watson's formula. Then, the contrast sensitivity in various luminance conditions (photopic, mesopic, and mesopic with glare) was measured and compared between these conditions. Results: The contrast sensitivity in all spatial frequency was decreased with BrAC increase. Although BrAC was increased, the peak of contrast sensitivity didn't change as 6 cycle per degree (cpd) in the photopic condition and 3 cpd in the mesopic condition, respectively. But, in the mesopic condition with glare, the peak of contrast sensitivity was shifted from 6 cpd at 0% and 0.05% BrAC to 3 cpd at 0.08% BrAC with increase of alcohol concentration. Conclusions: The increase of BrAC by drinking alcohol induces the decrease of contrast sensitivity in all spatial frequency and the shift of peak of contrast sensitivity, which can cause safety accidents, and may have an effect on various visual tasks.

Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption (생체 신호 기반 음주량 예측 및 음주량에 따른 운전 능력 평가)

  • Park, Seung Won;Choi, Jun won;Kim, Tae Hyun;Seo, Jeong Hun;Jeong, Myeon Gyu;Lee, Kang In;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-34
    • /
    • 2022
  • Drunk driving defines a driver as unable to drive a vehicle safely due to drinking. To crack down on drunk driving, alcohol concentration evaluates through breathing and crack down on drinking using S-shaped courses. A method for assessing drunk driving without using BAC or BrAC is measurement via biosignal. Depending on the individual specificity of drinking, alcohol evaluation studies through various biosignals need to be conducted. In this study, we measure biosignals that are related to alcohol concentration, predict BrAC through SVM, and verify the effectiveness of the S-shaped course. Participants were 8 men who have a driving license. Subjects conducted a d2 test and a scenario evaluation of driving an S-shaped course when they attained BrAC's certain criteria. We utilized SVR to predict BrAC via biosignals. Statistical analysis used a one-way Anova test. Depending on the amount of drinking, there was a tendency to increase pupil size, HR, normLF, skin conductivity, body temperature, SE, and speed, while normHF tended to decrease. There was no apparent change in the respiratory rate and TN-E. The result of the D2 test tended to increase from 0.03% and decrease from 0.08%. Measured biosignals have enabled BrAC predictions using SVR models to obtain high Figs in primary and secondary cross-validations. In this study, we were able to predict BrAC through changes in biosignals and SVMs depending on alcohol concentration and verified the effectiveness of the S-shaped course drinking control method.

Studies on the UV Spectrum of AcBr Lingin from Hardwood Grown in Mt. Jiri (지리산산(智異山産) 활엽수재(闊葉樹材) AcBr(acetyl bromide) Lignin의 UV Spectrum에 대(對)한 고찰(考察))

  • Lee, Dong-Il;Moon, Chang-Kuck
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 1986
  • These experiments were carried out to determine the ultraviolet absorption spectra of AcBr lignins(acetyl bromide lignin) from 10 hardwood species grown in Mt. Jiri. 1. There were 3 peak positions, at 249nm(max. peak), at 262-266nm(shallow min. peak) and at 270-280nm(lower max. peak). The Bj$\ddot{o}$rkman lignin and lignin sulfonatic acid spectra had shoulders, but the AcBr lignin didn't. 2. Average absorbances of the AcBr lignin at peak positions were 0.457${\pm}$0.0077 at 249nm, 0.297${\pm}$0.0029 at 262-266nm and 0.309${\pm}$0.0067 at 270-280nm. 3. Average absorptivities of the AcBr lignin at peak positions were 25.005${\pm}$0.3825 at 249nm, 16.264${\pm}$0.2347 at 262-266nm and 16.863${\pm}$0.3444 at 270-280nm. 4. AcBr lignin absorptivities in each species were as follows: 16.939${\pm}$0.3735 in Acer pseudo-sieboldianum var. koreanum, 17.411${\pm}$0.2937 in Carpinus laxiflora, 16.579${\pm}$0.4348 in Comus controversa, 16.385${\pm}$0.4140 in Fraxinus rhynchophylla, 16.287${\pm}$0.4156 in Meliosma myriantha, 16.492${\pm}$0.1432 in Platycarya strobilacea, 16.343${\pm}$0.3177 in Prunus sargentii, 17.549${\pm}$0.3253 in Sophora japanica, 18.400${\pm}$0.2925 in Stewartia koreana, 16.245${\pm}$0.4339 in Styrax obassia. 5. As the spectra of AcBr lignin from hardwood showed the unpromounced peak from 270nm to 280nm, it was supposed that thes hardwood lignins were the guaiacyl-syringyl copolymers.

  • PDF

Changes in Visual Acuity and Values of Objective Refraction with Breath Alcohol Concentration (호흡 알코올 농도에 따른 시력과 타각적 굴절검사 값의 변화)

  • Jung, Su A;Nam, Soo-Kyung;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • Purpose: This study was aimed to investigate effects of increased breath alcohol concentration (BrAC) which is the standard measurement of alcohol consumption in sobriety test under current laws on visual acuity and values of objective refraction. Methods: For twenty three males in 20s (average age $21.17{\pm}2.19$ years, body mass index (BMI) $22.09{\pm}2.16$) were selected. Distance and near visual test was performed at BrAC of 0%, 0.05% and 0.08%, and objective refraction with open-field auto-refractometer was also performed at different BrAC. Results: As breath alcohol concentration is increased, distance visual acuity was decreased, which was statistically significant, but near visual acuity was not changed. Also, values of objective refraction tended to be increased towards minus as breath alcohol concentration is increased. Conclusions: As breath alcohol concentration is increased, corrected visual acuity is decreased and refractive power is towards minus, it is necessary that visual acuity test and refraction measurement should be conducted under sober condition.

The Effects of Breath Alcohol Concentration Increase on Visual Field and Readable Visual Field (호흡 알코올 농도 증가가 시야 및 가독시야에 미치는 영향)

  • Jung, Su A;Nam, Soo-Kyung;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2016
  • Purpose: This study was aimed to investigate effects of breath alcohol concentration (BrAC) increase on visual field and readable visual field. Methods: 23 males in 20s (average age $21.17{\pm}2.19years$, body mass index (BMI) $22.09{\pm}2.16$) were selected and administered the amount of alcohol to reach 0.05% and 0.08% BrAC calculated by BAC (blood alcohol concentration) Dosing Software program. Then, visual field and readable visual field test with Vision Disk were conducted. Results: Visual field are measured as $74.41{\pm}15.97^{\circ}$, $64.98{\pm}17.93^{\circ}$, and $58.33{\pm}19.01^{\circ}$ (p=0.000) and readable visual field as $21.93{\pm}12.71^{\circ}$, $17.41{\pm}11.36^{\circ}$, $14.26{\pm}9.93^{\circ}$ (p=0.006) in 0.00%, 0.05% and 0.08% BrAC respectively. As breath alcohol concentration increased, both visual field and readable visual field decreased. Conclusions: BrAC increase with drinking could be the cause of safety accident by decreasing visual field and readable visual field, it is necessary to raise awareness.

Activated Carbon-Embedded Reduced Graphene Oxide Electrodes for Capacitive Desalination

  • Tarif Ahmed;Jin Sun Cha;Chan-gyu Park;Ho Kyong Shon;Dong Suk Han;Hyunwoong Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.222-230
    • /
    • 2023
  • Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g-1 in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260th to the 530th cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g-1. Detailed surface characterization and electrochemical analyses are conducted.

The Molybdate-Sensing Electrodes (Molybdate 이온 感應 電極)

  • Ihn, Gwon-Shik;Lee, Jung-Hwa;Min, Tae-Won
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 1984
  • Three component $Ag_2S-PbS-PbMoO_4$ electrodes have been prepared and evaluated for sensitivity to molybdate. The 64.5 : 14.0 : 21.5(w/w%) composition is superior in terms of potentiometric response, stability, rapidity of response and reproducibility. Testing was done over the concentration range of $10^{-1}{\sim}10^{-5}M\;MoO_4^{2-}\;in\;0.1F\;NH_4Ac-NH_4OH$ buffer solution at pH 7.95 with constant ionic strength. $I^-,\;Cl^-,\;Br^-\;and\;CN^-$, etc. interfere.

  • PDF

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

Analysis about the reliability of sobriety testing (focused on the Blood-Breath Ratios) (음주 측정의 신뢰도에 대한 분석 (혈액호흡 분배비율을 중심으로))

  • Lee, Won-Young;Ko, Myoung-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • The aim of this study was to evaluate the variability of the blood.breath ratio (BBR) value and to rationalize the determination of ethanol in breath for evidential sobriety testing. In the experiment forty eight healthy persons, 24 men and 24 women, took part. The experiment included the experimental condition such as sex(2),the type of alcoholic beverage(2; soju, whisky), the type of food(2;kimchi stew, pork belly) and the amount of ethanol consumed(2; 0.35g/kg, 0.70g/kg, based on body weight ) according to 24 factorial design by orthogonal arrays. Breath and blood sample were taken each 8 times and 5 times after the end of drinking. The blood and breath alcohol measurements were highly correlated (r = 0.973). The Results of four way analyses of variance revealed a significant 'the type of food' effect for maximum BrAC (F (1, 43) =5.1, pp<.029), but no significant effect in the type of alcoholic beverage and sex. The overall blood/breath ratio (${\pm}$ SD) was 2295${\pm}$403 and the 95% confidence interval were 1489 and 3101. In spite of these variations, at this time, it seems to be reasonable that apply 2100:1 conversion factor to breathalyzers, because most of the subjects showed the blood.breath ratio of over 2100:1 at least 30 minutes or more passed from the time of drinking as shown in this study.