• 제목/요약/키워드: Box-Jenkins model

검색결과 57건 처리시간 0.027초

Box-Jenkins 예측기법 소개

  • 박성주;전태준
    • 경영과학
    • /
    • 제1권
    • /
    • pp.68-80
    • /
    • 1984
  • Box-Jenkins 시계열 분석법은 변수에 관한 정보가 부족하거나 너무 많은 변수가 영향을 미치고 있는 경우에도 과학적인 예측치를 구할 수 있는 단기예측 방법이다. Box-Jenkins 모형은 자동회귀 모형(Autoregressive Model), 이동평균 모형 (Moving average Model), 계절적 시계열 모형을 통합한 일반적인 모형이기 때문에 특별한 불안정성을 보이지 않는 경우에는 모두 모형화 할 수 있으며, 모형에 관계된 계수의 수를 최소화 하면서 만족스러운 모형을 찾을 수 있다. Box-Jenkins예측방법은 모형선정, 매개변수추정, 적합성 검정의 3단계를 반복으로 수행함으로써 최적모형에 이르게 하게 하고 있기 때문에 최소의 가능한 모형으로부터 시작하여 부적당한 부분을 제거시켜 나감으로써 시행착오의 과정을 최소화 할 수 있다. 일반 사용자가 Box-Jenkins 시계열 분석법을 쉽게 사용할 수 있도록 Box-Jenkins Package가 개발되었으며 여기서는 KAIST 전산 개발 센터에 설치된 Package를 소개하고 그 사용예를 보였다.

  • PDF

Box-Jenkins 모형을 이용한 표고버섯 가격예측 (Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology)

  • 민경택
    • 한국산림과학회지
    • /
    • 제95권6호
    • /
    • pp.778-783
    • /
    • 2006
  • 표고버섯의 재배와 출하 결정에서 단기 가격의 예측은 매우 중요하다. 표고버섯 가격의 형성에는 많은 요인들이 작용하고 있기 때문에 이를 구조모형으로 예측하는 것은 어려운 일이다. Box-Jenkins 방법을 이용한 표고버섯과 모형선정 과정에서 발생할 수 있는 오류를 줄이고 경우에 따라서는 더 높은 예측력을 가지기도 한다. 이 연구는 1992~2005년의 가락시장 표고버섯 중품 가격자료를 이용하여 시계열 분석 모형을 구축하고 단기 가격을 예측한 것이다. 그리고 분석에 포함되지 않은 2006년의 실제가격과 예측결과를 비교하였다. 분석 결과는 날씨 변화의 영향으로 시장에 교란이 발생하였던 시기를 제외하면 비교적 높은 정확도를 보여 주어 모형의 유용성을 시사한다.

Box-Jenkins 시계열 분석을 이용한 지역의료보험 실시가 병원 환자 수에 미친 영향 (Impact of District Medical Insurance Plan on Number of Hospital Patients: Using Box-Jenkins Time Series Analysis)

  • 김용준;전기홍
    • Journal of Preventive Medicine and Public Health
    • /
    • 제22권2호
    • /
    • pp.189-196
    • /
    • 1989
  • In January 1988, district medical insurance plan was executed on a national scale in Korea. We conducted an evaluation of the impact of execution of district medical insurance plan on number of hospital patients: number of outpatients; and occupancy rate. This study was carried out by Box-Jenkins time series analysis. We tested the statistical significance with intervention component added to ARIMA model. Results of our time series analysis showed that district medical insurance plan had a significant effect on the number of outpatients and occupancy rate. Due to this plan the number of outpatients had increased by 925 patients every month which is equivalent to 8.3 percents of average monthly insurance outpatients in 1987, and occupancy rate had also increased by 0.12 which is equivalent to 16 percents of that in 1987.

  • PDF

모형을 이용한 미호천 유역의 하천수질 예측 (Prediction of Water Quality in Miho River Watershed using Water Quality Models)

  • 정상만;박정규;박영기;김이형
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.223-230
    • /
    • 2004
  • The QUAL2E and Box-Jenkins time series model were applied to the Miho river, a main tributary of the Geum river, to predict water quality. The models are widely used to predict water quality in rivers and watersheds because of its accuracy. As results of the study, we concluded as follows: Pollutant loadings in upper stream of Miho river were determined to 57,811 kgBOD/d, 19,350 kgTN/d, and 5,013 kgTP/d. The loading of TN in Mushim river was 19,450 kgTN/d, respectively. As the mass loadings were compared with pollutant sources, it concluded that the farming livestock contributed highly to mass emissions of BOD and TP and the population contributed to TN mass loading. The observed water quality values were applied to the models to verify and the models were used to predict the water quality. The QUAL2E Model predicted the concentrations of DO, BOD, TN and TP with high accuracy, but not for E-Coli. The Box-Jenkins time series model also showed high prediction for DO, BOD and TN. However, the concentrations of TP and E-Coli were poorly predicted. The result shows that the QUAL2E model is more applicable in Miho basin for prediction of water quality compared to Box-Jenkins time series model.

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석 (Forecasting Korean housing price index: application of the independent component analysis)

  • 박노진
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.271-280
    • /
    • 2017
  • 우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.

COMPARATIVE ANALYSIS ON TIME SERIES MODELS FOR THE NUMBER OF REPORTED DEATH CLAIMS IN KOREAN COMPULSORY AUTOMOBILE INSURANCE

  • Lee, Kang-Sup;Kim, Young-Ja
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.275-285
    • /
    • 2004
  • In this paper, the time series models for the number of reported death claims of compulsory automobile liability insurance in Korea are studied. We found that IMA${(0, 1, 1)}\;{\times}\;{(0, 1, 1)}_{12}$ would the most appropriate model for the number of reported claims by the Box-Jenkins method.

  • PDF

자기회귀 모형에 대한 Kalman Filter 적용에 관한 연구 (A Study on the Kalman Filter ; AR Model)

  • 신용백;윤상원;윤석환;변화성
    • 산업경영시스템학회지
    • /
    • 제16권28호
    • /
    • pp.31-37
    • /
    • 1993
  • Box-Jenkins models have some important limitations to the procedure : (a) They require a great deal of time, efforts and expertise for the model identification. (b) They require an extensive amount of past observations to identify an acceptable model. (c) The model selected is a constant model in time. Therefore, the Kalman Filter is recommended as a technique to overcome the three problems mentioned above. The research reported here uses the Kalman Filter algorithm to propose Kalman-AR(p) model. The data analysis shows that the Kalman-AR(p) model proposed can be used to resolve the problems of Box-Jenkins AR(p)model. It is seen that the Kalman Filter has great potentials for real-time industrial applications.

  • PDF

수요예측 모형의 비교분석과 적용 (A Comparative Analysis of Forecasting Models and its Application)

  • 강영식
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.243-255
    • /
    • 1997
  • Forecasting the future values of an observed time series is an important problem in many areas, including economics, traffic engineering, production planning, sales forecasting, and stock control. The purpose of this paper is aimed to discover the more efficient forecasting model through the parameter estimation and residual analysis among the quantitative method such as Winters' exponential smoothing model, Box-Jenkins' model, and Kalman filtering model. The mean of the time series is assumed to be a linear combination of known functions. For a parameter estimation and residual analysis, Winters', Box-Jenkins' model use Statgrap and Timeslab software, and Kalman filtering utilizes Fortran language. Therefore, this paper can be used in real fields to obtain the most effective forecasting model.

  • PDF

섬진강 월유출량의 추계학적 모형 (Stochastic Modelling of Monthly flows for Somjin river)

  • 이종남;이홍근
    • 물과 미래
    • /
    • 제17권4호
    • /
    • pp.281-291
    • /
    • 1984
  • 한국하천유역의 강우량관측자료는 풍부하나 하천유량측정자료가 많고 섬진강 유역내의 압록과 송정의 유량관측기록이 비교적장기간에 것이 있고, 유속측정을 많이 하고 있으므로 본유역자료를 가지고 월유출량계열의 모형식을 유도하였다. 본모형식은 월강우량기록으로서 월유출량 산출식을 Box & Jenkins의 대체함수모형식에다 ARIMA의 잔차모형식을 가하여 유도한 것이다. 또 기 강우량과 유출량 자료간에는 잔차시계열이 정상공분산을 갖는다는 가정하에 모형식을 작성하였다. 자기상관 함수의 특성으로부터 ARIMA모형을 유도함에도 먼저 계산식으로 각변수를 산출하고, 이 변수를 다소조정반복시켜 가장 정확한 융통성있는 Box & Jenkins 방식의 모형식을 작성하였다. 섬진강에서 가장 적정모형식을 다음과 같은 일반식으로 주어졌다. 여기서 $Y_t=($\omega$o-$\omega$_1B) C_iX_t+$\varepsilon$t$ $Y_t$ 월유출량, $X_t$: 월 강우량, $C_i$: 월유출률, $$\omega$o-$\omega$_1$ : 대체변수 $$\varepsilon$_t$ : 잔차(임의오차성분) 섬진강수위관측소의 기 월유출량 기록자료로서 월유출량게열의 만족할만한 모형을 비교검토 연구작성하였다.

  • PDF

시계열 분석을 이용한 정상인의 보행 가속도 신호의 모델링 (Modeling of Normal Gait Acceleration Signal Using a Time Series Analysis Method)

  • 임예택;이경중;하은호;김한성
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권7호
    • /
    • pp.462-467
    • /
    • 2005
  • In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.