• Title/Summary/Keyword: Box-Behnken-Design

Search Result 178, Processing Time 0.03 seconds

Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology (반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화)

  • Park, Ha Eun;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.299-304
    • /
    • 2013
  • A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination ($R^2$) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.

Experimental Study on the Optimized Lubrication Conditions in MQL Turning of Workpieces with Taper Angle (테이퍼 각을 가진 소재의 MQL 선삭가공에서 최적 윤활 조건에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kang, Dong-Wi;Cha, Na-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Many researchers are trying to reduce the use of lubrication fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this study is to determine the optimization lubrication conditions in minimum quantity lubrication(MQL) turning of workpieces with taper angle. This study has been considered about various conditions of MQL. The objective functions are cutting force and surface roughness. Design factors are nozzle diameter, nozzle angle, MQL supply pressure, distance between tool and nozzle and length of supply line. The cutting force and surface roughness were statistically analyzed by the use of the Box-Behnken method. As a results, optimum lubrication conditions were suggested and verification experiment has been performed. The results of this study are expected to help the selection of lubrication conditions in MQL turning.

Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis (반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구)

  • Jang, Bong Jin;Park, Cheol woo;Kim, Seung Won;Ju, Min Kwan;Park, Ki Tae;Lee, Sang Yoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.

Optimization of Thermal-alkaline Pre-treatment for Anaerobic Digestion of Flotation Scum in Food Waste Leachate Using Box-Behnken Design and Response Surface Methodology (Box-Behnken 및 반응표면 분석법을 이용한 음식물류 폐수 부상 스컴의 혐기성 소화를 위한 열-알칼리 전처리 최적화)

  • Lee, Dong-Young;Choi, Jae-Min;Kim, Jung-Kwang;Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2015
  • Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL $CH_4/g$ VS was estimated under the optimum conditions at $62.0^{\circ}C$, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.

The Statistical Optimization of TCE Dechlorination by Geobacter lovleyi Using Box-Behnken Design (Box-Behnken법을 이용한 Geobacter lovleyi의 TCE 탈염소화 공정 최적화 연구)

  • Cha, Jaehun;An, Sangwoo;Chun, sukyoung;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.37-42
    • /
    • 2012
  • This study investigated the use of Geobacter lovleyi with TBOS(Tetrabutoxysilane) for TCE(Trichloroethylene) dechlorination. The TCE dechlorination by Geobacter lovleiy was mathematically described as the independent variables such as initial concentration of TCE, protein mass of Geobacter lovleyi and initial concentration of TOBS, and these were modeled by the use of response surface methodology(RSM). These experiments were carried out as a Box-Behnken Design(BBD) consisting of 15 experiments. The application of RSM yielded the following equation, which is empirical relationship for the dechlorination efficiency($Y_1$, %) of TCE and first order kinetic constant of TCE($Y_2,\;d^{-1}$) by independent variables in coded unit : $Y_1=-11.50X_1$(initial concentration of TCE) + $4.25X_2$(protein mass as Geobacter lovleyi injected mass) - $4.75X_3$(initial concentration of TBOS) - ${6.58X_1}^2$ - ${8.58X_2}^2$ + 93.67, $Y_2=-10.92X_1+5.06X_2-4.89X_3-{4.93X_3}^2-2.19X_1X_2+2.54X_1X_3-2.19X_2X_3+16.71$. In this case, the value of the adjusted determination coefficient(adjusted $R^2$= 0.975 and 0.934) were closed to 1, showing a high significance of the model. Statistical results showed the order of TCE dechlorination at experimental factors to be initial TCE concentration > initial TBOS concentration > protein mass, but the interaction effects were non-significant.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

Statistical Optimization of Medium Components for the Production of Prodigiosin by Hahella chejuensis KCTC 2396

  • Kim, Sung-Jin;Lee, Hong-Kum;Yim, Joung-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1903-1907
    • /
    • 2008
  • Prodigiosin is a natural red pigment with algicidal activity against Cochlodinium polykrikoides, a major harmful red-tide microalga. To increase the yield of prodigiosin production by Hahella chejuensis KCTC 2396, significant medium components were determined using a two-level Plackett-Burman statistical design technique. Among 12 components included in basal medium, $NaHCO_3$, ${Na}_{2}{SiO}_{3}$, ${NH_4}{NO_3}$, ${Na}_{2}{SO}_{4}$ and $CaCl_2$ were determined to be important for prodigiosin production. The medium formulation was finally optimized using a Box-Behnken design as follows: 1% sucrose; 0.4% peptone; 0.1 % yeast extract; and (g/l): NaCl, 20.0; ${Na}_{2}{SO}_{4}$, 9.0; $CaCl_2$, 1.71; KCl, 0.4; and (mg/l): ${H_3}{BO_3}$, 10.0; KBr, 50.0; NaF, 2.0; $NaHCO_3$, 45.0; ${Na}_{2}{SiO}_{3}$, 4.5; ${NH_4}{NO_3}$, 4.5. The predicted maximum yield of prodigiosin in the optimized medium was 1.198 g/l by the Box-Behnken design, whereas the practical production was 1.495 g/l, which was three times higher than the basal medium (0.492 g/l).

Optimization of Culture Media for Enhanced Chitinase Production from a Novel Strain of Stenotrophomonas maltophilia Using Response Surface Methodology

  • Khan, Minhaj Ahmad;Hamid, Rifat;Ahmad, Mahboob;Abdin, M.Z.;Javed, Saleem
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1597-1602
    • /
    • 2010
  • Chitinase is one of the most important mycolytic enzymes with industrial significance. This enzyme is produced by a number of organisms including bacteria. In this study, we describe the optimization of media components with increased production of chitinase for the selected bacteria, Stenotrophomonas maltophilia, isolated from soil. Different components of the defined media responsible for influencing chitinase secretion by the bacterial isolate were screened using Plackett-Burman experimental design and were further optimized by Box-Behnken factorial design of response surface methodology in liquid culture. Maximum chitinase production was predicted in medium containing 4.94 g/l chitin, 5.56 g/l maltose, 0.62 g/l yeast extract, 1.33 g/l $KH_2PO_4$, and 0.65 g/l $MgSO_4{\cdot}7H_2O$ using response surface plots and the point prediction tool of the DESIGN EXPERT 7.1.6 (Stat-Ease, USA) software.

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.

Optimization of Plasma Process to Improve Plasma Gas Dissolution Rate using Three-neck Nozzle (3구 노즐을 이용한 플라즈마 가스 용존율 향상을 위한 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2021
  • The dissolution of ionized gas in dielectric barrier plasma, similar to the principle of ozone generation, is a major performance-affecting factor. In this study, the plasma gas dissolving performance of a gas mixing-circulation plasma process was evaluated using an experimental design methodology. The plasma reaction is a function of four parameters [electric current (X1), gas flow rate (X2), liquid flow rate (X3) and reaction time (X4)] modeled by the Box-Behnken design. RNO (N, N-Dimethyl-4-nitrosoaniline), an indictor of OH radical formation, was evaluated using a quadratic response surface model. The model prediction equation derived for RNO degradation was shown as a second-order polynomial. By pooling the terms with poor explanatory power as error terms and performing ANOVA, results showed high significance, with an adjusted R2 value of 0.9386; this indicate that the model adequately satisfies the polynomial fit. For the RNO degradation, the measured value and the predicted values by the model equation agreed relatively well. The optimum current, gas flow rate, liquid flow rate and reaction time were obtained for the highest desirability for RNO degradation at 0.21 A, 2.65 L/min, 0.75 L/min and 6.5 min, respectively.