• Title/Summary/Keyword: Box girders

Search Result 149, Processing Time 0.022 seconds

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck (콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2019
  • The purpose of this study was to calculate the temperature difference of the sectional elevation according to the asphalt thickness of the steel box girder bridge deck and provide data on the design basis accordingly. Asphalt thicknesses produced four steel box girder model specimens of 0mm, 50mm, 100m and 150mm. In each model, 17 to 23 temperature sensors were attached to upper concrete and steel box girders. Six temperature gauges were selected to compare the temperature difference with Euro codes. The maximum and lowest temperature were calculated at the reference atmospheric temperature of each model, and the temperature difference (slope) was calculated based on this calculation. Four models of temperature difference are presented at each model. The 0mm to 100mm temperature difference models showed a -0.9 to -1.5 degree lower temperature difference compared to the temperature difference of Euro codes at the top of the slab. Overall, the measured temperature difference was found to be between 5.45% and 8.33% compared to the Euro code. The standard error coefficient, which was calculated by multiplying the average temperature with the standard error, was calculated from a range of 2.50 to 2.51 times the average at the top and bottom. It is estimated that the proposed temperature difference model can be used as a basic data when calculating temperature difference criteria for bridges in Korea.

Development and Experimental Performance Evaluation of Steel Composite Girder by Turn Over Process (단면회전방법을 적용한 강합성 소수주거더 개발 및 실험적 성능 평가)

  • Kim, Sung Jae;Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.407-415
    • /
    • 2010
  • In Korea, more than 90% of the total number of steel bridges built for 40~70 m span length is a steel box-girder bridge type. A steel box-girder bridge is suitable for long span or curved bridges with outstanding flexural and torsional rigidity as well as good constructability and safety. However, a steel box-girder bridge is uneconomical, requiring many secondary members and workmanship such as stiffeners and ribs requiring welding attachments to flanges or webs. Therefore, in US and Japan, a plate girder bridge, which is relatively cheap and easy to construct is generally used. One type of the plate girder bridge is the two- or three-main girder plate bridge, which is a composite plate girder bridge that minimizes the number of required main girders by increasing the distance between the adjacent girders. Also, for the simplification of girder section, the stiffener which requires attachment to the web is not required. The two-main steel girder plate bridge is a representative type of plate girder bridges, which is suitable for bridges with 10 m effective width and has been developed in the early 1960s in France. To ensure greater safety of two- or three-main girder plate bridges, a larger steel section is used in the bridge domestically than in Europe or Japan. Also, the total number of two- or three-main girder plate bridge constructed in Korea is significantly less than the steel box girder bridge due to a lack of designers' familiarity with more complex design detailing of the bridge compare to that of a steel box girder bridge design. In this study, a new construction method called Turn Over method is proposed to minimize the steel section size used in a two- or three-main girder plate bridge by applying prestressing force to the member using confining concrete section's weight to reduce construction cost. Also, a full scale 20 m Turn Over girder specimen and a Turn Over girder bridge specimen were tested to evaluate constructability and structural safety of the members constructed using Turn Over process.

Analytical Evaluation of Behavior of Precast PSC Box Curve Bridge Based on Design Variables (프리캐스트 PSC 중공 박스 곡선교의 설계변수에 관한 해석적 거동 평가)

  • Kim, Sung-Bae;Kim, Sung-Jae;Park, Jeong-Cheon;Uhm, Ki-Ha;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.267-275
    • /
    • 2014
  • Recently, the construction of curved bridge has increased, thus researchers perform the analytic studies on PSC curved bridge. However, the grid analysis method that are mostly used in the construction industry is not adequate to acquire the precise behavior evaluation of curved PSC briges. Therefore, the precise finite element analysis considering the effective variables were performed to establish the basis for the design method of curved PSC bridge by using 3D elements and bar element. The evaluated variables in this analysis were the number of girders, loading point, section figure, change of prestressing force. The results show the load carrying capacity of the 3 girder type bridge is 200% of that of the 2 girder type, and that applying load on outer girder makes the load resistance capacity and the deflection deviation of 2 girders smaller. The structural capacity of the bridge is improved when the section size is increased, but the efficiency of it is not sufficient enough compare to that of the change of prestressing forces. The change of prestressing forces shows that the camber and the load carrying capacity are linearly increased as PS force is increased. Moreover, when the PS force applied on outer girder is increased than that of inner girder, the deviation of deflection the girders decreases, thereby the stability of the bridge is enhanced.

Development of Longitudinal Ultimate and Residual Strength Estimation System for Hull Girder Structure (선각 거어더의 최종 몇 잔류종강도 추정 시스템 재발)

  • J.H. Ham;U.N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.107-115
    • /
    • 1995
  • A simple estimation system of ultimate and residual strength for ship structures is developed on the Open-Window system of SUN4 engineering workstation. System development consists of three stages. Firstly, various ultimate longitudinal strength estimation methods are investigated and some rational estimation methods are adopted based on the parametric comparison of various hulls or box girders. Secondly, these selected and newly formulated methods are linked with elastic & perfectly plastic section modulus calculation procedure. Therefore, the longitudinal hull girder strength can be calculated in the intact and damaged conditions due to the grounding or collision of hull structure. Finally, an exclusive system is developed such that whole procedures are proceeded under the window management system using mouse button and elastic and perfect plastic stress conditions. Also longitudinal members are plotted automatically under three dimensional graphic circumstances. These established program is tested for various actual ships, and some examples are illustrated.

  • PDF

A Behavioral Analysis of Curved Steel Box Bridge Associated with Diaphragm's Shape and Spacing (다이아프램 형상 및 간격에 따른 곡선 강박스거더의 거동해석)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2006
  • In this study 3-D shell FEM model was applied to analyze the behavior of curved steel box girders stiffened by diaphragms. The reliability of the analytical method has been proved by comparing with the existing results. It was also found from this analysis that main factors affecting a distortional stress are length of a girder, curvature of the girder, and spacing of diaphragms. A modelled bridge with 30m of span length and 40m of radius was analyzed to find an optimum spacing of diaphragm, and as a result of applying different spacings, 5m was found to be most appropriate to control the stress ratio regulated by specifications. In the effect of diaphragm shape, the rhamen-typed diaphragm is found to be more effective than the fully filled-up one in the range of opening ratio of 0.4 to 0.6. But, the fully filled-up diaphragm had more efficiency in terms of reducing the distortional stress than X-truss typed diaphragm.

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.

Dynamic analysis of coupled train - ladder track - elevated bridge system

  • Xia, He;Deng, Yushu;Xia, Chaoyi;De Roeck, G.;Qi, Lin;Sun, Lu
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.661-678
    • /
    • 2013
  • As a new type of vibration reduction, the ladder track system has been successfully used in engineering. In this paper, a numerical model of the train-track-viaduct system is established to study the dynamic responses of an elevated bridge with ladder track. The system is composed of a vehicle submodel, a track submodel and a bridge submodel, with the measured track irregularities as the system self-excitation. The whole time histories of a train running through an elevated bridge with $3{\times}27m$ continuous PC box girders are simulated. The dynamic responses of the bridge such as deflections, lateral and vertical accelerations, and the vehicle responses such as derailment factors, offload factors and car-body accelerations are calculated. The calculated results are partly validated through the comparison with the experimental data. Compared to the common slab track, adapting the ladder sleeper can effectively reduce the accelerations of the bridge girder, and also reduce the car-body accelerations and offload factors of the train vehicle.