• Title/Summary/Keyword: Bovine bone

Search Result 245, Processing Time 0.026 seconds

Evaluation of deproteinized bovine bone mineral as a bone graft substitute;A comparative analysis of basic characteristics of three commercially available bone substitutes (탈단백 우골의 골이식 대체재로서의 특성에 대한 평가;세 종류의 골 대체재의 기본 특성에 대한 비교분석)

  • Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.863-875
    • /
    • 2005
  • Bovine bone-derived bone substitutes are widely used for treatment of bone defects in dental and orthopedic regenerative surgery. The purpose of this study was to evaluate the basic characteristics of deproteinized bovine bone mineral as a bone graft substitute. Commercially available products from three different bovine bone minerals-Bio-Oss(GeistlichPharma, Switzerland), BBP(Oscotec. Korea), Osteograf/N-300(Dentsply Friadent Ceramed, USA) - were investigated. They were evaluated by scanning electron microscopy(SEM), energy dispersive X-ray spectrometer(EDS), surface area analysis(BET), and Kjeldahl protein analysis. Cell viability on different products was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay. The results of this study indicated that each bone substitute displayed distinct surface properties. Furthermore, Kjeldahl protein analysis indicated that residual crude proteins are present in deproteinized bovine bone mineral. BBP showed relatively large amount of residual protein, which indicated that the possibility of disease transmission can not be safely ruled out. Based on the results of this study, it is suggested that active quality management is strongly needed in operations that involve processing bovine bone tissue for medical use.

Biomechanical Properties of Cortical Bone in Bovine Long Bones (소의 장골에서 치밀골의 생체역학적인 특성)

  • 김남수;황의희;최성진;정인성;최은경;최인혁
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.345-350
    • /
    • 2003
  • We were preferred bovine cortical bone to the others in xenobonegrafts for human and small animals, because those were not limited to supply and have sufficient size for bone transplantation. The strength (ST) and stiffness (SF) of cortical bone in bone grafts were very important. The strength and stiffness of cortical bone were much difference according to position of long bone in bovine limbs because which were biomechanical different to bear body weight. Therefore, we determinated by three bending point test methods the strength and stiffness of cortical bone which were collected in diaphysis of humerus, radius, femur and tibia of bovine. In the results, the strengths and stiffness among these were highest in radius by ST: 253.84$\pm$40.80 MPa, SF: 7.89$\pm$1.91 Gpa and lowest in humerus by ST: 185.69$\pm$28.54 MPa, SF: 6.21$\pm$1.22 Gpa.

Use of Bovine-derived bone mineral (Bio-Oss Collagen$^{(R)}$) in surgical treatment of peri-implantitis: A case report (임상가를 위한 특집 3 - Peri-implantitis의 regeneration therapy 증례 보고)

  • Cho, Young Jae
    • The Journal of the Korean dental association
    • /
    • v.51 no.12
    • /
    • pp.650-657
    • /
    • 2013
  • The aim of this study was to achieve healing of Peri-implantitis defects and hard tissue augmentation using a bovine-derived bone mineral on the defect site. Two patients were treated with the surgical approach. With a full muco-periosteal flap elevation, the implant surfaces were exposed and granulation tissue removed around the implant and between the threads. Each surface of the contaminated implant was prepared with the air-abrasive device(PerioFlow$^{(R)}$) for decontamination. Bovine-derived bone mineral(Bio-Oss collagen$^{(R)}$) was then used to fill the defects and muco-periosteal flaps sutured to achieve transmucosal healing. Radiographs and clinical photographs were taken before and after 6 months of healing and an estimate of bone fill was assessed. Within the limits of the present case report, a surgical approach in treatment of peri-implantitis defects using a collagen form of bovine bone mineral was visited. Although limited, the two cases showed the stability and biocompatibility of a bovine-derived bone mineral and effectiveness of air-abrasive device(PerioFlow$^{(R)}$) as a decontamination method.

Clinical Evaluation of Simultaneous Implants Placement Following Augmentation of the Maxillary Sinus with Deproteinized Bovine Bone (탈단백 우골을 이용한 상악동 거상술 후 즉시 임플란트 식립에 대한 임상적 평가)

  • Kim, Hyun-Kuk;Kim, Jin-Wook;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • Purpose: Placement of endosseous implants in the atrophic maxilla is often restricted because of the lack of supporting bone. In this article, augmentation of the maxillary sinus floor with deproteinized bovine bone to enable insertion of endosseous implants is described. The technique is aimed at providing a cortical layer on top of the graft to ensure a reliable seal of the maxillary sinus and to achieve optimal stability of the bone graft in case of simultaneously placement of dental implants. Methods: The procedure was used in 200 patients (839 implants), using deproteinized bovine bone. The mean follow-up was 28.5 months. No inflammation of the bone grafts nor of the maxillary sinus occurred. The patients received implant supported overdentures or bone-anchored bridges. Results: The survival rate of implant restoration of this study was 97.6%. The total average of marginal bone loss in radiographs was $0.20{\pm}0.38$ mm. Insufficient primary stability, bony quality, and infection were thought to be associated factors in the failed cases. Conclusion: This study documented that deproteinized bovine bone, when used as a grafting material for augmentation of the sinus floor, may lead to proper osseointegration of a endosseous implant.

Effect of inorganic polyphosphate on guided bone regeneration (무기인산염이 골유도재생에 미치는 영향)

  • Chung, Jong-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

THE LITERATURE REVIEW ON THE SINUS BONE GRAFT USING DEPROTEINIZED BOVINE BONE MINERAL WITH LATERAL APPROACH (탈단백 우골 (Deproteinized Bovine Bone Mineral)을 이용한 상악동 골이식술: 측면 접근법의 문헌 고찰)

  • Hong, Soon-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.5
    • /
    • pp.482-487
    • /
    • 2006
  • As the uses of dental implants are prevailing, the need for sinus bone graft is increasing. Deproteinized bovine bone mineral (DBBM) was not mentioned in 1996 Sinus Bone Graft because of the deficit of the available data. Since then, many clinical and laboratory reports support the use of DBBM in the sinus bone graft procedure. In this report, the histological and clinical successes of sinus bone grafting with DBBM is discussed with available literatures. After sinus bone grafts with DBBM, the proportion of new bone formed was similar or superior to natural maxillary posterior alveolar bone after healing period of 6 months to 1 year. It seems that the grafted DBBM is not be either resorbed nor replaced with bone, but this may not disturb the osseointegration of dental implants installed into it. The clinical survival rates of dental implants installed on the sinus grafted with DBBM was similar to those installed on the ungrafted posterior maxillary alveolar ridge or grafted with autogenous bone. So, it can be concluded that DBBM can be used successfully in the sinus bone graft.

A comparative analysis of basic characteristics of several deproteinized bovine bone substitutes (수종의 탈단백 우골 이식재의 특성 비교 분석)

  • Yeo, Shin-Il;Park, Sung-Hwan;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose: Deproteinized bovine bone substitutes are commonly used in dental regenerative surgery for treatment of alveolar defects. In this study, three different bovine bone minerals - OCS-B (NIBEC, Seoul, Korea), Bio-Oss (Geistlich - Pharma, Switzerland), Osteograft/N - 300 (OGN, Dentsply Friadent Ceramed. TN, USA) - were investigated to analyze the basic characteristics of commercially available bone substitutes. Methods: Their physicochemical properties were evaluated by scanning electron microscopy, energy dispersive X-ray spectrometer (EDS), surface area analysis, and Kjeldahl protein analysis. Cell proliferation and alkaline phosphatase (ALP) activity of human osteosarcoma cells on different bovine bone minerals were evaluated. Results: Three kinds of bone substitutes displayed different surface properties. Ca/P ratio of OCS - B shown to be lower than other two bovine bone minerals in EDS analysis. Bio-Oss had wider surface area and lower amount of residual protein than OCS - B and OGN. In addition Bio - Oss was proved to have lower cell proliferation and ALP activity due to lots of residual micro particles, compared with OCS - B and OGN. Conclusions: Based on the results of this study, three bovine bone minerals that produced by similar methods appear to have different property and characteristics. It is suggested that detailed studies and quality management is needed in operations for dental use and its biological effects on new bone formation.

Maxillary sinus floor augmentation with anorganic bovine bone : Histologic evaluation in humans (Anorganic bovine bone을 이용한 상악동저 거상술의 조직학적 평가)

  • Son, Woo-Kyung;Shin, Seung-Yun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • Purpose: The aim of this report is to investigate the efficacy of anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) at maxillary sinus floor augmentation. Materials and methods: Two male patients who missed maxillary posterior teeth were included. They were performed maxillary sinus floor augmentation using anorganic bovine bone xenograft(Bio-$Oss^{(R)}$). After 10 or 13 months, the regenerated tissues were harvested using trephine drills with 2 or 4mm diameter and non-decalcified specimens were made. The specimens were examined histologically and histomorphometrically to investigate graft resorption and new bone formation. Results: Newly formed bone was in contact with Bio-$Oss^{(R)}$ particles directly without any gap between the bone and the particles. The proportions of newly formed bone were $23.4{\sim}25.3%$ in patient 1(Pt.1) and 28.8% in patient 2(Pt.2). And the proportions of remained Bio-$Oss^{(R)}$ were $29.7{\sim}30.2%$ in Pt.1 and 29.2% in Pt.2. The fixtures installed at augmented area showed good stability and the augmented bone height was maintained well. Conclusion: Anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) has high osteoconductivity and helps new bone formation, so that it can be used in maxillary sinus floor augmentation.

Effect of deproteinized bovine bone mineral soaked in inorganic polyphosphate on bone regeneration (무기인산염과 탈단백우골의 혼합사용이 골재생에 미치는 효과)

  • Na, Seong-Yoon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.77-89
    • /
    • 2007
  • This study was performed to evaluate the effect of deproteinized bovine bone mineral soaked in inorganic polyphosphate on bone regeneration in the calvaria of rabbit in the procedure of guided bone regeneration with titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group used TR-ePTFE membrane filled with de-proteinized bovine bone mineral, experimental group I used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 4% inorganic polyphosphate, experimental group II and III used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 8% or 16% inorganic poly-phosphate respectively. After decortication in the calvaria, GBR procedure was performed on 8 rabbits with only TR-ePTFE membrane or titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in inorganic polyphosphate. The animals were sacrificed at 4 weeks, and 8 weeks af-ter the surgery. Non-decalcified specimens were processed for histologic analysis, and new bone for-mation was assessed by histomorphometric as well as statical analysis. 1. Both control group and experirrental group dermnstrated increasing of new bone formation until 8weeks. 2. At 8 weeks, experimental group I and group II showed the significant difference compared to control group in new bone formation. Especially experimental group II showed the most in-creasing of new bone formation. 3. The higher concentration of inorganic polyphosphate filled, the more volume of bone formation pro-moted, but experimental group III did not reveal significant difference compared to contol group. 4. Deproteinized bovine bone mineral did not resorbed at all until 8 weeks. These results suggest that inorganic polyphosphate has a promoting effect on bone regeneration. possibly by enhancing osteoconductivity of the carrier and by increasing osteoinductivity of the defected alveolar bone tissue, but not as we respect.

The Effect of $\beta$-Tricalcium Phosphate and Deproteinized Bovine Bone on Bone Formation in the Defects of Rat Calvaria (흰쥐 두개골 결손부에서 베타-트리칼슘 인산염과 탈단백우골의 골형성 효과)

  • Jung, Seung-Gon;Park, Hong-Ju;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.313-323
    • /
    • 2010
  • Purpose: This study was conducted to evaluate the effect of beta-tricalcium phosphate (Cerasorb$^{(R)}$, Germany) and deproteinized bovine bone (Bio-Oss$^{(R)}$, Switzerland) grafted to the defect of rat calvaria artificially created and the effect of use of absorbable membrane (BioMesh$^{(R)}$, Korea) on new bone formation. Materials and Methods: Transosseous circular calvarial defects with diameters of 5 mm were prepared in the both parietal bone of 30 rats. In the control group I, no specific treatment was done on the defects. In the control group II, the defects were covered with absorbable membrane. In the experimental group I, deproteinized bovine bone was grafted without absorbable membrane; in the experimental group II, deproteinized bovine bone was grafted with absorbable membrane; in the experimental group III, beta-tricalcium phosphate was grafted without absorbable membrane; in the experimental group IV, beta-tricalcium phosphate was grafted with absorbable membrane. The animals were sacrificed after 3 weeks and 6 weeks respectively, and histologic and histomorphometric evaluations were performed. Results: Compare to the control groups, the experimental groups showed more newly formed bone. Between the experimental groups, beta-tricalcium phosphate showed more resorption than deproteinized bovine bone. Stabilization of grafted material and interception of the soft tissue invasion was observed in the specimen treated with membrane. There was no statistical difference between the experimental group I, III and experimental group II, IV classified by graft material, but statistically significant increase in the amount of newly formed bone was observed in the experimental group I, II and II, IV classified by the use of membrane (P<0.05). Conclusion: Both beta-tricalcium phosphate and deproteinized bovine bone showed similar osteoconductibility, but beta-tricalcium phosphate is thought to be closer to ideal synthetic graft material because it showed higher resorption rate in vivo. Increased new bone formation can be expected in bone graft with use of membrane.