• 제목/요약/키워드: Bovine aortic endothelial cells

검색결과 35건 처리시간 0.026초

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

4-Hydroxy nonenal (HNE) Induces Apoptosis and Cell Cycle Arrest in Bovine Aortic Endothelial Cells

  • Chung, Sang-Woon;Yee, Su-Bog;Choi, Hye-Joung;Park, Hwa-Sun;Park, Sang-Eun;Chung, Hae-Young;Kim, Nam-Deuk
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.244.2-245
    • /
    • 2002
  • 4-Hydroxy nonenal (HNE) is a lipid peroxidation product derived from oxidized $\omega$-6 polyunsaturated fatty acids, such as arachidonic acid. HNE is widely used as a marker of lipid peroxidation. To study the hypothesis that HNE may induce apoptosis and cell cycle arrest, we estimated cytotoxicity of HNE in BAE (bovine aortic endothelial) cells. Anti-proliferative effects were examined by morphological changes and MTT assay after exposure to different time (0-3 hr) and concentration (3-7 ${\mu}$M of HNE. (omitted)

  • PDF

Trametes cubensis 버섯 추출물이 소의 대동맥 내피세포의 혈관 기능에 미치는 효능 (Effect of Trametes cubensis Extract on Vascular Function of Bovine Aortic Endothelial Cells)

  • 장수정;이동형;김성환;박헌용
    • 한국균학회지
    • /
    • 제48권1호
    • /
    • pp.1-13
    • /
    • 2020
  • 버섯은 예로부터 암과 염증 질환의 약재로써 많이 사용되어왔다. Trametes cubensis 버섯종은 현재까지 많은 연구가 이루어지지 않았고, 형태학적 특성만 알려져 있고 효능에 관한 연구 보고가 미흡한 실정이다. 따라서 본 연구에서는 T. cubensis 균사체 추출물(Trametes cubensis extract, TCE)의 혈관생리학적 효능을 알아보기 위해 세포와 분자수준에서의 연구를 수행하였다. 먼저 TCE를 처리하였을 때, 세포 독성은 없었고 세포성장을 촉진시켰다. 또한 세포이동이 TCE에 의해 증가하는 것을 확인하였다. 다음으로 LPS (Lipopolysaccharide)에 의해 유도된 THP-1 세포의 내피세포 부착이 TCE에 의해 억제되는 것을 확인하였다. 또한 세포신호전달 경로 분석을 한 결과, TCE에 의해 활성산소가 증가하였으며, Akt억제를 통하여 p38 MAPK가 활성화되었다. 그리고 TCE가 촉발하는 세포성장, 세포이동, 단핵구 부착 등은 p38 MAPK (mitogen-activated protein kinase)에 의해 조절되었으며, 활성산소와는 관련이 없었다. 결론적으로, TCE는 세포성장, 세포이동, 단핵구 부착을 조절하였으며, 이는 TCE가 동맥경화와 같은 심혈관계 질환의 예방 및 치료제 혹은 혈관기능개선제로 개발될 가능성이 있음을 암시한다.

The Effects of DTBNP on Intracellular $Ca^{2+}$ Signaling in Cultured Bovine Aortic Endothelial Cells

  • Park, Sung-Jin;Kim, Byung-Joo;Zhu, Mei-Hong;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권6호
    • /
    • pp.341-346
    • /
    • 2005
  • The mechanism underlying oxidant-induced intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) increase was studied in cultured bovine aortic endothelial cells (BAECs) using fura-2 AM. In the presence of 2 mM extracellular $Ca^{2+}$, the application of DTBNP ($20{\mu}M$), a membrane-permeable oxidant, caused an increase in $[Ca^{2+}]_i$, and DTT (2 mM) as a reductant completely reversed the effect of DTBNP. The $[Ca^{2+}]_i$ increase induced by DTBNP was also observed in an extracellular $Ca^{2+}$-free/2 mM EGTA solution, indicating the release of $Ca^{2+}$ from intracellular store(s). After endoplasmic reticulum was depleted by an $IP_3$-generating agonist, ATP ($30{\mu}M$) or an ER $Ca^{2+}$ pump inhibitor, thapsigargin ($1{\mu}M$), DTBNP-stressed BAECs showed an increase of $[Ca^{2+}]_i$ in $Ca^{2+}$-free/2 mM EGTA solution. Ratio-differences before and after the application of DTBNP after pretreatment with ATP or thapsigargin were $0.42{\pm}0.15$ and $0.49{\pm}0.07$, respectively (n=7), which are significantly reduced, compared to the control value of $0.72{\pm}0.07$ in a $Ca^{2+}$-free/2 mM EGTA solution. After the protonophore CCCP ($10{\mu}M$) challenge to release mitochondrial $Ca^{2+}$, the similar result was obtained. Ratio-difference before and after the application of DTBNP after pretreatment with CCCP was $0.46{\pm}0.09$ (n=7). Simultaneous application of thapsigargin and CCCP completely abolished the DTBNP-induced $[Ca^{2+}]_i$ increase. The above results together indicate that the increase of $[Ca^{2+}]_i$ by DTBNP resulted from the release of $Ca^{2+}$ from both endoplasmic reticulum and mitochondria.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과 (Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells)

  • 최우성;송지나;박미현;유희종;박헌용
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.59-67
    • /
    • 2016
  • 도라지는 다양한 종류의 triterpenoid계통의 saponin을 함유한 다년생 식물이다. 도라지는 한국에서 오랫동안 식품으로 사용되어 왔으며 그 추출물에 관한 생리활성연구도 많이 보고되었으나, 발효 도라지추출물에 관한 혈관기능 연구는 미미한 실정이다. 본 연구자들은 먼저 도라지 추출물을 발효시킨 후, 발효도라지추출물을 제조하였으며, 제조된 발효도라지추출물이 혈관내피세포에 어떤 효과를 미치는 지 관찰하였다. BAEC에 발효도라지추출물을 농도 별로 처리하였을 때, 고농도(100 μg/ml)에서는 혈관내피세포의 탈착이 일어났으며, 저농도(0.1 μg/ml)에서는 세포탈착은 일어나지 않았으나 세포성장과 세포이동이 촉발됨을 관찰하였다. 고농도에서 일어난 세포탈착은 세포사 즉, 세포사멸, 세포괴사, 오토파지 등과는 관련이 없었다. 또한 고농도의 도라지 추출물은 혈관내피세포에서 유래한 작은 vesicle을 형성하였는데, 이 vesicle은 세포사멸과 관련이 없기 때문에 내피세포에서 유래된 EMP로 추측된다. 흥미롭게도 고농도의 세포탈착 현상은 EMP로 추측되는 vesicle에 의하여 일어난 현상이었다. 저농도의 도라지 추출물이 유발한 세포이동과 세포성장은 혈관내피세포의 중요한 신호전달물질중의 하나인 Akt의 활성화를 통해 일어남을 확인하였다. 결론적으로 도라지 추출물은 혈관내피세포의 성장을 촉진함으로써 혈관의 안정성을 유지하고 세포성장과 이동을 촉발함으로써 상처치유에 효과를 나타낼 수 있음을 본 연구를 통하여 확인하였다.

Antioxidants ofnew compounds from marine Algae prevent celldeath of endothelial cells

  • Lee, Ji Yoen;Lee, Mi Hwa;Park, Hae-Ryoun;Choi, Jae Soo;Seo, Hong Suk;An, Won Gun;Choi, Won Chul
    • 한국어병학회지
    • /
    • 제16권1호
    • /
    • pp.39-49
    • /
    • 2003
  • Cytosolic oxidation by 4-hydroxy-2-nonenal (4HNE) and tert-butyl hydroperoxide (t-BHP) results in cell death of bovine aortic endothelial cells (BAEC). In this study, we have investigated the roles of antioxidants such as 2,3,6-tribromo-4,5-dihydroxy benzyl methyl ether (TDB) and phloroglucinol in preventing cell death. After treatment with oxidants for 6h, cells became compact and showed nuclear condensation, which were characteristics of early apoptosis. After l2h treatment, morphologic features including severe cytoplasm condensation, membrane blebbing, and apoptotic bodies were prominent and these findings were interpreted as characteristics of late-apoptosis. When the apoptotic cells were treated with antioxidants for 12h, both early and late apoptotic cells did show no significant change. After oxidant treated cells were incubated with antioxidant for 24h, the characteristics of early-apoptosis were eliminated but cells in lateapoptosis could not return to normal cells. These results suggest that TDB and phloroglucinol prevent the cells from dying through apoptosis induced by 4HNE and t-BHP in early stage.

Modulation of Inwardly Rectifying $K^+$ Channel by Intracellular and Extracellular pH in Bovine Aortic Endothelial Cells

  • Park, Kyu-Sang;Kong, In-Deok;Lee, Joong-Woo;Rhim, Hye-Whon;Kim, Young-Chul;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권5호
    • /
    • pp.255-260
    • /
    • 2002
  • The effects of intracellular and extracellular pH on the inwardly rectifying $K^+$ (IRK) channel of the bovine aortic endothelial cells (BAECs) were examined using whole-cell patch-clamp technique. The IRK current, efficiently blocked by $Ba^{2+}\;(200{\mu}M),$ is the most prominent membrane current in BAECs, which mainly determines the resting membrane potential. The expression of Kir2.1 was observed in BAECs using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Intracellular alkalinization, elicited by the extracellular substitution of NaCl with $NH_4Cl$ (30 mM), significantly augmented the amplitude of IRK current. On the contrary, the amplitude of IRK current was attenuated by the Na-acetate (30 mM)-induced intracellular acidification. The changes in extracellular pH also closely modulated the amplitude of IRK current, which was decreased to $40.2{\pm}1.3%$ of control upon switching the extracellular pH to 4.0 from 7.4. The extracellular pH value for half-maximal inhibition (pK) of IRK current was 5.11. These results demonstrate that the activity of IRK channel in BAECs, probably Kir2.1, was suppressed by proton at both sides of plasma membrane.

Apicularen A, a Macrolide from Chondromyces sp., Inhibits Growth Factor Induced In Vitro Angiogenesis

  • Kwon, Ho-Jeong;Kim, Dong-Hoon;Shim, Joong-Sub;Ahn, Jong-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.702-705
    • /
    • 2002
  • Apicularen A (Api A) was recently isolated from Chondromyces sp. as a potent antitumor agent. Because of its unique chemical structure, a macrolide with a highly unsaturated amide side chain, and potent growth inhibitory effect in various cancer cell lines, Api A is currently in clinical trial for cancer therapy. In the present study, the effect of Api A on in vitro angiogenesis of bovine aortic endothelial cells (BAECS) was investigated. Api A potently inhibited the proliferation of BAECS in a dose-dependent manner. Treatment of the endothelial cells with up to 10 ng/ml of the compound did not show any cytotoxicity. In addition, it inhibited basic fibroblast growth factor (bFGF)-induced invasion and capillary tube formation of BAECS at concentrations of 2-5 ng/ml. These results, therefore, demonstrate that Apl A is a novel antiangiogenic agent and may suppress the growth of tumors, at least in part, by the inhibition of neovascularization.