• Title/Summary/Keyword: Bovine aortic endothelial cells

Search Result 35, Processing Time 0.026 seconds

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

4-Hydroxy nonenal (HNE) Induces Apoptosis and Cell Cycle Arrest in Bovine Aortic Endothelial Cells

  • Chung, Sang-Woon;Yee, Su-Bog;Choi, Hye-Joung;Park, Hwa-Sun;Park, Sang-Eun;Chung, Hae-Young;Kim, Nam-Deuk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.244.2-245
    • /
    • 2002
  • 4-Hydroxy nonenal (HNE) is a lipid peroxidation product derived from oxidized $\omega$-6 polyunsaturated fatty acids, such as arachidonic acid. HNE is widely used as a marker of lipid peroxidation. To study the hypothesis that HNE may induce apoptosis and cell cycle arrest, we estimated cytotoxicity of HNE in BAE (bovine aortic endothelial) cells. Anti-proliferative effects were examined by morphological changes and MTT assay after exposure to different time (0-3 hr) and concentration (3-7 ${\mu}$M of HNE. (omitted)

  • PDF

Effect of Trametes cubensis Extract on Vascular Function of Bovine Aortic Endothelial Cells (Trametes cubensis 버섯 추출물이 소의 대동맥 내피세포의 혈관 기능에 미치는 효능)

  • Jang, Sujeong;Lee, Dong Hyeung;Kim, Seong Hwan;Park, Heonyong
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • Mushrooms have been extensively used as traditional medicines to treat cancer and inflammatory diseases. In this study, we examined whether Trametes cubensis extract (TCE) exerted beneficial effects on cardiovascular function. First, we demonstrated that TCE was non-cytotoxic and enhanced cell proliferation of bovine aortic endothelial cells (BAEC). Moreover, TCE induced cell migration and blocked lipopolysaccharide-induced adhesion of monocytes to BAEC. We performed a variety of cell signaling studies, showing that TCE activates p38 MAPK and generates reactive oxygen species (ROS). Our results showed that TCE-induced vascular functions were mediated by p38 MAPK, but not by ROS. These results provide insights into bio-medical applications of TCE as a preventive or therapeutic agent for treating cardiovascular diseases including atherosclerosis.

The Effects of DTBNP on Intracellular $Ca^{2+}$ Signaling in Cultured Bovine Aortic Endothelial Cells

  • Park, Sung-Jin;Kim, Byung-Joo;Zhu, Mei-Hong;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.341-346
    • /
    • 2005
  • The mechanism underlying oxidant-induced intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) increase was studied in cultured bovine aortic endothelial cells (BAECs) using fura-2 AM. In the presence of 2 mM extracellular $Ca^{2+}$, the application of DTBNP ($20{\mu}M$), a membrane-permeable oxidant, caused an increase in $[Ca^{2+}]_i$, and DTT (2 mM) as a reductant completely reversed the effect of DTBNP. The $[Ca^{2+}]_i$ increase induced by DTBNP was also observed in an extracellular $Ca^{2+}$-free/2 mM EGTA solution, indicating the release of $Ca^{2+}$ from intracellular store(s). After endoplasmic reticulum was depleted by an $IP_3$-generating agonist, ATP ($30{\mu}M$) or an ER $Ca^{2+}$ pump inhibitor, thapsigargin ($1{\mu}M$), DTBNP-stressed BAECs showed an increase of $[Ca^{2+}]_i$ in $Ca^{2+}$-free/2 mM EGTA solution. Ratio-differences before and after the application of DTBNP after pretreatment with ATP or thapsigargin were $0.42{\pm}0.15$ and $0.49{\pm}0.07$, respectively (n=7), which are significantly reduced, compared to the control value of $0.72{\pm}0.07$ in a $Ca^{2+}$-free/2 mM EGTA solution. After the protonophore CCCP ($10{\mu}M$) challenge to release mitochondrial $Ca^{2+}$, the similar result was obtained. Ratio-difference before and after the application of DTBNP after pretreatment with CCCP was $0.46{\pm}0.09$ (n=7). Simultaneous application of thapsigargin and CCCP completely abolished the DTBNP-induced $[Ca^{2+}]_i$ increase. The above results together indicate that the increase of $[Ca^{2+}]_i$ by DTBNP resulted from the release of $Ca^{2+}$ from both endoplasmic reticulum and mitochondria.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells (혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과)

  • Choi, Woosoung;Song, Jina;Park, Mi-Hyeon;Yu, Heui Jong;Park, Heonyong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Platycodon grandiflorum A. De Candolle (Korean name, ‘Doraji’) is a perennial plant containing various triterpenoid saponins. The roots of this plant have traditionally been used as a food material in Korea. Here, we prepared a fermented P. grandiflorum extract (PG). Although it was previously reported that P. grandiflorum A. extract has a variety of physiological functionalities, including anti-inflammatory and anti-oxidant activities, little is known about its vascular functions. In this study, we executed a series of experiments to identify the effect of PG on endothelial cells. PG at a high concentration (100 μg/ml) was found to induce cell detachment, whereas PG at a low concentration (0.1 μg/ml) appeared to promote cell proliferation and migration in bovine aortic endothelial cells. The cell detachment induced by the high concentration was not associated with cell death, such as apoptosis, necrosis, and autophagy. In addition, we found that PG at the high concentration formed a small vesicular structure called an endothelial microparticle (EMP). The EMP was prepared by centrifugal fractionation and determined with flow cytometry and a microscope. Interestingly, PG-induced cell detachment was found to be mediated by EMP. We furthermore determined that PG at the low concentration activated Akt, a crucial cell-signaling molecule, and then controlled cell proliferation and migration. Overall, our findings suggest that PG at low doses maintains vascular stability by promoting endothelial cell proliferation, and enhances the efficacy of wound healing by cell proliferation and migration activity.

Antioxidants ofnew compounds from marine Algae prevent celldeath of endothelial cells

  • Lee, Ji Yoen;Lee, Mi Hwa;Park, Hae-Ryoun;Choi, Jae Soo;Seo, Hong Suk;An, Won Gun;Choi, Won Chul
    • Journal of fish pathology
    • /
    • v.16 no.1
    • /
    • pp.39-49
    • /
    • 2003
  • Cytosolic oxidation by 4-hydroxy-2-nonenal (4HNE) and tert-butyl hydroperoxide (t-BHP) results in cell death of bovine aortic endothelial cells (BAEC). In this study, we have investigated the roles of antioxidants such as 2,3,6-tribromo-4,5-dihydroxy benzyl methyl ether (TDB) and phloroglucinol in preventing cell death. After treatment with oxidants for 6h, cells became compact and showed nuclear condensation, which were characteristics of early apoptosis. After l2h treatment, morphologic features including severe cytoplasm condensation, membrane blebbing, and apoptotic bodies were prominent and these findings were interpreted as characteristics of late-apoptosis. When the apoptotic cells were treated with antioxidants for 12h, both early and late apoptotic cells did show no significant change. After oxidant treated cells were incubated with antioxidant for 24h, the characteristics of early-apoptosis were eliminated but cells in lateapoptosis could not return to normal cells. These results suggest that TDB and phloroglucinol prevent the cells from dying through apoptosis induced by 4HNE and t-BHP in early stage.

Modulation of Inwardly Rectifying $K^+$ Channel by Intracellular and Extracellular pH in Bovine Aortic Endothelial Cells

  • Park, Kyu-Sang;Kong, In-Deok;Lee, Joong-Woo;Rhim, Hye-Whon;Kim, Young-Chul;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.255-260
    • /
    • 2002
  • The effects of intracellular and extracellular pH on the inwardly rectifying $K^+$ (IRK) channel of the bovine aortic endothelial cells (BAECs) were examined using whole-cell patch-clamp technique. The IRK current, efficiently blocked by $Ba^{2+}\;(200{\mu}M),$ is the most prominent membrane current in BAECs, which mainly determines the resting membrane potential. The expression of Kir2.1 was observed in BAECs using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Intracellular alkalinization, elicited by the extracellular substitution of NaCl with $NH_4Cl$ (30 mM), significantly augmented the amplitude of IRK current. On the contrary, the amplitude of IRK current was attenuated by the Na-acetate (30 mM)-induced intracellular acidification. The changes in extracellular pH also closely modulated the amplitude of IRK current, which was decreased to $40.2{\pm}1.3%$ of control upon switching the extracellular pH to 4.0 from 7.4. The extracellular pH value for half-maximal inhibition (pK) of IRK current was 5.11. These results demonstrate that the activity of IRK channel in BAECs, probably Kir2.1, was suppressed by proton at both sides of plasma membrane.

Apicularen A, a Macrolide from Chondromyces sp., Inhibits Growth Factor Induced In Vitro Angiogenesis

  • Kwon, Ho-Jeong;Kim, Dong-Hoon;Shim, Joong-Sub;Ahn, Jong-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.702-705
    • /
    • 2002
  • Apicularen A (Api A) was recently isolated from Chondromyces sp. as a potent antitumor agent. Because of its unique chemical structure, a macrolide with a highly unsaturated amide side chain, and potent growth inhibitory effect in various cancer cell lines, Api A is currently in clinical trial for cancer therapy. In the present study, the effect of Api A on in vitro angiogenesis of bovine aortic endothelial cells (BAECS) was investigated. Api A potently inhibited the proliferation of BAECS in a dose-dependent manner. Treatment of the endothelial cells with up to 10 ng/ml of the compound did not show any cytotoxicity. In addition, it inhibited basic fibroblast growth factor (bFGF)-induced invasion and capillary tube formation of BAECS at concentrations of 2-5 ng/ml. These results, therefore, demonstrate that Apl A is a novel antiangiogenic agent and may suppress the growth of tumors, at least in part, by the inhibition of neovascularization.