• Title/Summary/Keyword: Bounding Box

Search Result 153, Processing Time 0.031 seconds

Implementation and Design of Bounding Box Image Augmentation GUI Program for expanding Object Detection Models' applicability (Object Detection Model 적용성 확대를 위한 BoundingBox 이미지 증강 GUI 프로그램 연구)

  • Jeon, Jin-young;Min, Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.539-540
    • /
    • 2022
  • 본 논문에서는 Bounding Box가 포함된 증강 이미지 데이터셋을 손쉽게 생성할 수 있는 독립형 GUI 프로그램을 제안한다. 본 논문의 연구를 통하여 직관적인 마우스 클릭 동작만으로 적은 수의 이미지 파일과 annotation 파일로부터 필요한 만큼의 증강 이미지 데이터셋을 짧은 시간 내에 생성하고, 다양한 아키텍처의 학습용 이미지 데이터셋 증강에 적용할 수 있다.

  • PDF

An Efficient Collision Queries in Parallel Close Proximity Situations

  • Kim, Dae-Hyun;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2402-2406
    • /
    • 2005
  • A collision query determines the intersection between given objects, and is used in computer-aided design and manufacturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and compare to that of other bounding volumes.

  • PDF

Surface Inspection Algorighm using Oriented Bounding Box (회전 윤곽 상자를 이용한 표면 검사 알고리즘)

  • Hwang, Myun Joong;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2016
  • DC motor shafts have several defects such as double cut, deep scratch on surface, and defects in diameter and length. The deep scratches are due to collision among the other shafts. So the scratches are long and thin but their orientations are random. If the smallest enclosing box, i.e. oriented bounding box for a detective point group is found, then the size of the corresponding defect can be modeled as its diagonal length. This paper proposes an suface inspection algorithm for the DC motor shaft using the oriented bounding box. To evaluate the proposed algorithm, a test bed is made with a line scan CCD camera (4096 pixels/line) and two rollers mechanism to rotate the shaft. The experimental result on a pre-processed image with contrast streching algorithm, shows that the proposed algorithm sucessfully finds 150 surface defects and its computation time (0.291 msec) is enough fast for the requirement (4 seconds).

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.

Comparison of Fire Detection Performance according to the Number of Bounding Boxes for YOLOv5 (YOLOv5 학습 시 바운딩 박스 개수에 따른 화재 탐지 성능 비교)

  • Sung, YoungA;Yi, Hyoun-Sup;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.50-53
    • /
    • 2022
  • In order to detect an object in yolv5, a process of annotating location information on an existing image is required when learning an image. The most representative method is to draw a bounding box on an image to store location information as meta information. However, if the boundary of the object is ambiguous, it will be difficult to make a bounding box. A representative example would be to classify parts that are not fire and parts that are fire. Therefore, in this paper, images of 100 samples judged to have caught fire were learned by varying the number of boxes. The results showed better fire detection performance in the model where the bounding box was trained by annotating it with three boxes by segmenting it slightly more than annotating it with one box by holding the edge as large as possible during annotating it with one box.

  • PDF

The Representation of 3-D Objects Using the Lattice-Structured Space Subdivision for the Simplification of the Inside Test in the Bounding Box (Bounding box의 Inside Test를 간단화시킨 격자형공간분할을 이용한 입체원형의 표현)

  • 김영일;조동익;최병욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1633-1638
    • /
    • 1988
  • This paper proposes the lattice-structured space subdivision method using bounding volume to reduce a great number of ray-surface intersection calculations in ray tracing algorithm for the computer graphics. We show that this method reduced 50%-70% calculations compard to pre-exist method by experiments.

  • PDF

An Efficient k-D tree Traversal Algorithm for Ray Tracing on a GPU (GPU상에서 동작하는 Ray Tracing을 위한 효과적인 k-D tree 탐색 알고리즘)

  • Kang, Yoon-Sig;Park, Woo-Chan;Seo, Choong-Won;Yang, Sung-Bong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.3
    • /
    • pp.133-140
    • /
    • 2008
  • This paper proposes an effective k-D tree traversal algorithm for ray tracing on a GPU. The previous k-D tree traverse algorithm based on GPU uses bottom-up searching from a leaf to the root after failing to find the ray intersected primitive in the leaf node. During the bottom-up search the algorithm decides the current node is visited or not from the parent node. In such a way, we need to visit the parent node which was already visited and the duplicated bounding box intersection tests. The new k-D tree traverse algorithm reduces the brother and parent duplicated visit by using an efficient method which decides whether the brother node is already visited or not during the bottom-up search. Also the algorithm take place bounding box intersection tests only for the nodes which is not yet done. As a result our experiment shows the new algorithm is about 30% faster than the previous.

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

Development of an Efficient 3D Object Recognition Algorithm for Robotic Grasping in Cluttered Environments (혼재된 환경에서의 효율적 로봇 파지를 위한 3차원 물체 인식 알고리즘 개발)

  • Song, Dongwoon;Yi, Jae-Bong;Yi, Seung-Joon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • 3D object detection pipelines often incorporate RGB-based object detection methods such as YOLO, which detects the object classes and bounding boxes from the RGB image. However, in complex environments where objects are heavily cluttered, bounding box approaches may show degraded performance due to the overlapping bounding boxes. Mask based methods such as Mask R-CNN can handle such situation better thanks to their detailed object masks, but they require much longer time for data preparation compared to bounding box-based approaches. In this paper, we present a 3D object recognition pipeline which uses either the YOLO or Mask R-CNN real-time object detection algorithm, K-nearest clustering algorithm, mask reduction algorithm and finally Principal Component Analysis (PCA) alg orithm to efficiently detect 3D poses of objects in a complex environment. Furthermore, we also present an improved YOLO based 3D object detection algorithm that uses a prioritized heightmap clustering algorithm to handle overlapping bounding boxes. The suggested algorithms have successfully been used at the Artificial-Intelligence Robot Challenge (ARC) 2021 competition with excellent results.

Acceleration of Terrain Rendering Using Bounding Box Subdivision (바운딩 박스 세분화를 통한 지형 렌더링의 가속화)

  • Lee, Eun-Seok;Lee, Jin-Hee;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.71-80
    • /
    • 2011
  • Recent terrain rendering applications such as 3D games and virtual reality, use GPU-based ray-casting method for rendering high-quality scenes in realtime. As the size of terrain dataset grows bigger, the rendering speed will be decreased by the increase of the number of texture samplings. To accelerate the conventional ray-casting, we propose an efficient ray casting method with subdivided bounding boxes which are based-on GPU quadtree traversal. The subdivision of the terrain's bounding box can reduce the empty spaces effectively. By performing the ray-casting with this compact bounding box, we can efficiently reduce computation with empty space skipping. Unlike the recent quadtree-based empty space skipping techniques which perform the tree traversal at each ray, our method traverses the tree only once per frame. Therefore, we can save much computational time.