• Title/Summary/Keyword: Bounded Disturbance

Search Result 73, Processing Time 0.028 seconds

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

An improved Robust and Adaptive Controller Design for a Robot Manipulator (로보트 매니퓰레이터의 개선된 견실 및 적응제어기의 설계)

  • Park, H.S.;Kim, D.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.20-27
    • /
    • 1994
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an improved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

ON A ROBUST DESIGN OF TIME-VARYING SYSTEM WITH BOUNDED DISTURBANCE

  • Suzumura, Fumihiro;Xu, Hau;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.852-857
    • /
    • 1990
  • The purpose of this paper is to design a robust controller for a class of time-varying systems with bounded disturbance described by the differential equation. The robust desiging method proposed in this paper, called "incentive design method" is different from developed designing methods in the past, and has following properties. The robust control law designed by this method can guarantee a certain value of the cost functional no matter how the disturbance vary within the given bounds. Here, the certain value of the cost functional may not be a saddle-point value, but is the value selected by a system designer. Therefore, the bounded disturbance has at least no bad effect on the value of the cost functional during finite interval of time. The method is based on the theory of incentive differential games. In addition, the form of control law is constructed by the system designer ahead of time. A numerical illustrative example is given in this paper. It is shown from this derivation and this numerical example that the approach developed in this paper is effective and feasible for some practical control problem.l problem.

  • PDF

A Fuzzy Robust Controller with Saturation for Robot Manipulators (로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

Velocity Controller Design for Fish Sorting Belt Conveyor System using M-MRAC and Projection Operator

  • Nguyen, Huy Hung;Tran, Minh Thien;Kim, Dae Hwan;Kim, Hak Kyeong;Kim, Sang Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.42-50
    • /
    • 2017
  • A velocity controller using a modified model reference adaptive controller (M-MRAC) and a projection operator for a fish sorting belt conveyor system with uncertainty parameters, input saturation and bounded disturbances is proposed in this paper. To improve the tracking performance and robustness of the proposed controller in the presence of bounded disturbances, the followings are done. Firstly, the reference model for the conventional model reference adaptive controller (CMRAC) is replaced by a modified reference model for a M-MRAC to reduce unexpected high frequency oscillation in control input signal when the adaptation rate is increased. Secondly, estimated parameters in an adaptive law are varied smoothly under bounded external disturbances and a projection operator is utilized in an adaptive law for the proposed M-MRAC controller to be robust. Thirdly, an auxiliary error vector is introduced for compensating the error dynamics of the system when the saturation input occurs. Finally, the experimental results are shown to verify the better effectiveness and performance of the proposed controller under the bounded disturbance and saturated input than that of a CMRAC.

An improved robust and adaptive controller design for a robot manipulator (로보트 매니플레이터의 개선된 견실 및 적응제어기의 설계)

  • 최형식;김두형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.156-160
    • /
    • 1993
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an inproved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing force coming from the difference between th actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF