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ABSTRACT

The purpose of this paper is to design a robust controller
for a class of time-varying systems with bounded disturbance
described by the differential equation. The robust design-
ing method proposed in this paper, called “incentive design
method” is different from developed designing methods in the
past, and has following properties. The robust control law
designed by this method can guarantee a certain value of the
cost functional no matter how the disturbance vary within the
given bounds. Here, the certain value of the cost functional
may not be a saddle-point value, but is the value selected by
a system designer. Therefore, the bounded disturbance has at
least no bad effect on the value of the cost functional during
finite interval of time. The method is based on the theory
of incentive differential games. In addition, the form of con-
trol law is constructed by the system designer ahead of thne.
A numerical illustrative example is given in this paper. It is
shown from this derivation and this numerical example that
the approach developed in this paper is effective and feasible

for some practical control problem.
1. INTRODUCTION

Robustness has heen regarded as one of important proper-
ties for control systems. Robustness deals with the question
whether some relevant qualitative properties are preserved if
unknown perturbations are presented in the dynamical sys-
tem. The basic aspect of robustness is the design of a control
law which achieves pre-specified performance criteria over an
entire region of operating conditions, that is, one of purpose
of designing robust control is to ensure desirable closed-loop
properties.

Several kinds of methods designing robust control for the
system with disturbance have been proposed by many au-
thors from different points of view. For example, servomech-
anism, minimax optimal method and cheap control have
heen pr<)posed.[]][2][3] In addition, if the statistical proper-
ties of the disturbance are assumed, stochastic control ap-
proaches are used.[] Furthermore, H* optimal control theory
based on minimax optimality has been proposed and studied
rocenlly.ls]lﬁ] It is shown that H* optimal control theory has
effective results for designing coutrol system with disturbance.

The purpose of the feedback control is to coincide the state
of system with desirable value under uncertain disturbance.
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In general, the disturbance is not measurable directly, but the
effect of the disturbance can be known by observing state of
system. In this case, there exists delay time until state of
system is influenced by disturbance. To suppress the distur-
bance, the feedback control law must be regulated based on
difference between state of systems and desirable value. It
is possible to improve dynamical properties of system using
a high-gain feedback represented by cheap control. In gen-
eral, the system constructed by a high-gain feedback becomes
unstable frequently and even if the systems are stable, the re-
sponse has excessive peeks. Moreover, it is expected that the
value of cost functional has the excessive amounts of energy.

A designing method of robust control, called “incentive de-
sign method”, has been proposed by us to design the robust
control law.I8 The good results have been obtained by apply-
ing the method for a class of systems containing the bounded
uncertain parameters. The method is based on the theory of
incentive differential games.m

The purpose of this paper is to provide the designing
method of robust control law for a class of time-varying sys-
tems with bounded disturbance. This method is different from
developed designing methods in the past and has {ollowing
propertics. The robust control law designed by this method
can guarantee a certain value of the cost functional no mat-
ter how the disturbance vary within the given bound, that
is, the value of cost functional is suppressed under a certain
value during finite interval of time. Therefore, the bounded
disturbance has at least no bad effect on the value of the cost
functional during finite interval of time. Here, the certain
value of the cost functional may not be a saddle-point valne,
but is the value sclected by a system designer. In addition,
the form of control law is constructed by the system designer
ahead of time.

In this paper, firstly we illustrate the outline of this method
for general systems. Then, we design concretely such a ro-
bust control law for a class of linear time-varying systems with
bounded disturbance. Morcover, we give a numerical illustra-
tive example, and show this method is effective and feasible
for some kinds of practical systems. Finally, the paper will be
conclude with discussions on the results obtained above and

some possible futher researches.
2. INCENTIVE DESIGN METHOD

In general, the systems with bounded disturbance can be



described by
(1) = f(t,z(1), u(t), v(1)), (1)

z(to) = zo, t € [to, ty],

where z(t) € R" is a state vector and u(t) € U is a control
o fa)T is the vector field in ®". U
is a closed and bounded subset of R™. wv(t) is a scalar val-

input vector. f = (fi,...

ued disturbance that is known to be in a closed and bounded
region,

v(t) € Q, (2)
where 2 is the subset of ®. Fig.1 shows the simplified model
of the control systems for analysis.

Disturbance v{t)

State x{t)

i

v=0 fnput u(t) System
)}

+ dy/dt=f (1, x, u)

Controller

Fig.1 The Robust control of system with disturbance.

The cost functional is given as
ty
Iz, u,0) = (g, 2(1))) +/ Lt (1), u())de.  (3)
¢

A 1obust control law is to express u(t) as a function of the
state variable z(¢) and time t,

u(t) = (¢, z(1)), 4)

where y : Rx R"* — U, v € T and T is the set of all admissible
control law.

Now, the quation is to find a robust control law (¢, z())
for the system (1) with disturbance v(t) whose bound is
known ahead of time. Especially, for single-input single-
output (SISO) system a high-gain feedback control law is used
frequently. It is expected, however, that the value of cost func-
tional J(zr,u,v) increases for the control system constructed
by a high-gain feedback. In this paper, we consider construct-
ing a robust control law to guarantee a certain value of the
cost functional (3). A designing method is mentioned below
briefly for general system (1).

Incentive Design Method

step 1 Determine a most favorable value of cost functional
(3), that is, find a pair (u*,v*) € U x 2 which is the most
favorable pair for a system designer.

mJ‘nJ(:c,u,u') (5)
st 2(t) = f62(0),u(1), (1),
z(to) = =zo, t € [to, ty].

step 2 Construct a robust control law +(t, z(t)), such that v €
I. I'is a subset of T' defined as

T={y e Th(t,z*(1) = v*(1)}, (6)

where z*(¢) is an optimal state trajectory corresponding

to pair (u*,v*).

step 3 Find a robust control law y: R x ®” — U, v € T, such
that v*(t) €  solves the following problem uniquely.

rvr:EiSj(v), J(vy = —J(z,u,v), (1)

st £(t) = f(t,2(0), u(t), v(1)),
z(to) = 2o, t € [to, ty],
u(t) = (¢, z(1).

Clearly, the robust control law v € [' determined by this
method sketched by the steps 1 - 3 can guarantee that

J(z,y,v) < J(z*, ", v*), Yo(t) € Q, (®)

that is, the value of cost functional (3) obteined is smaller
than or equal to a certain value J{z*, u* v*).

Remark 1 The method sketched by the steps 1 - 3 is different
from minimax optimal method. Here, the pair (u*, v*)
may not be a saddle-point, but is the most favorable pair
selected by a system designer. In addition, the form of
the robust control law v € I" is constructed by the system
designer ahead of time. Therefore, it is possible to de-
sign this robusi conirol law io be lincar in some practical

control system,

In the next section, a robust control law will be constructed
concretely by making use of the method sketched by the steps
1 - 3 for a class of linear time-varying system with bounded
disturbance.

3. MAIN RESULTS

In this section, we will consider the time-varying system
with bounded disturbarce described by

(1) = A(t)z(t) + B()u(t) + D(t)v(1), (9)

I(t0)= o, te [to,lf],
where z(t) € R™, u(t) € R™ are a state vector and a control in-
put vector respectively. v(t) € R is an uncertain disturbance,

but it is known that v(t) vary in given bound
a <) <8, (10)

where o and 3 are constant. In (9), A(¢t), B(t), C(t) are ma-
trices of appropriate dimensions with time-varying elements
which are measurable and hounded on [to, t/]

The cost functional will be described by

J(z,u,v) = —;-/t/(IT(t)Q(t)I(t)+ WTOR(u(t)dt, (11)

where the matrices Q(t) = Q7(¢) > 0, R(t) = RT(t) > 0 are
piecewise continuous functions on {to, s}, and with appropri-

ate dimensions.



Here, the maximum bounds v*(t) = 8 of the bounded dis-
turbance and the corresponding optimal solution u*(t) will be
regarded as the most favorable for the system designer. A
robust control law y(t,z(¢)) can be constructed such that the
equation (8) is guaranteed for all v(t) € 2, where

Q = {v(t) € Rla < v(t) < B,t € [to, 1]}, (12)

For this problem, we can obtain following Theorem 1 such
that the robust control law can guarantee a certain value
J(z*,u*,v*) of cost functional (11) under Condition 1 stated

below.

Theorem 1 Let Condition 1 be satisfied for the matrix p(t)
whose components are piecewise continuous functions on
time interval [to,2¢]. Then, there exists a robust control
law ¥(t, z(t)), such that the most favorable value J(z*,
u*, v™) of the cost functional (11) can be guaranteed, and
this control law (¢, z(¢)) can be constructed as

¥t z(0) = (p(t) - RT(OBTOK(8))z(t)

CRIWBTWM() - p(tyn(r), D

where £*(t) is the optimal state trajectory for the follow-
ing form of closed-loop system.

#(t) = (A(t) - BO)RT ()BT (1)K (1))=(2)
+(D(t)" (1) ~ B()R™ ()BT (1) M (1)),
(14)
z(to) = 7o, t € fto, ty).
Here, the matrices K (t), M (t) are the solutions of Riccati-
type and linear matrix differential equations described by

the following forms respectively.

K@ = —ATOEO-KOAD -
+K (BRI ()BT(1)K(1),
K(t;)=0, tel[to,tg]
M@®) = —(AT(t)— B@)R'@)BT(OKNT M)
—K(t)D(t)o*(1),
(16)
M(t;) =0, t € [to, tg].

Condition 1 There exists a matrix function p(t) € R™*" such
that it satisfies the relation

DT} P()z* (1) + S(1)) < 0, an

where the matrices P(t), S(t) are the solutions of linear

matrix differential equations of the forms

P(t) = -AT(1)P(1) - P(DA(t) + Q(t)
+P()B(YR™I(t)BT (1)K (1)
—{p(t) - RT()BT (1)K (2))7
x BT()(K (1) + P(1)),
P(Z/) =0,
Sy = —AT(1)S(1)
= P(O)(D(t)u" (1) = BU)R™ (1) BT (1) M (1))
=(p(t) - RT(@)BT()K(1))T
x BT()(M (1) + 5(1)),

(18)

t € [to,tf],

(19)

S(ty) =0, t € [to,tg].

Proof In the light of the method sketched by the steps 1 - 3,
we give the main steps of this proof and design concretely
a rubust control law for a class of linear time-varying
systems with bounded disturbance.

step 1 The pair (v, v*) will be assumed as the most favorable
pair for the system designer, where v*(t) = 8. u*(t) is the
optimal solution of the following optimal problem, called
Problem A, corresponding to v*(t).

muin J(z,u,v") (20)
st 2(t) = A(t)z(r) + B(t)ul(t) + D(t)*(t)
Z(tg) = Zo, te [to,tf].

For Problem A, by making use of an adjoint vector A 4(t),
we find that Hamiltonian H 4 is

Hy = HT@Q)z(t) + uT (1) R(t)u(r))
+ MEA®(t) + B(Ou(t) + D()w*(1)).

(21
The corresponding adjoint equation is
M) = —Q(0)e(1) + AT()AA(0), (22)
AA(if):O, tE[to,lj].
Let Aa(t) be
Aa(t) = K(0)(2) + M(1), (23)

where K(t) € R7*" and M (t) € R", whose components
are continuously differentiable on time interval [to, ty), ate
the solutions of Riccati-type matrix differential equation
(15) and linear matrix differential equation (16) respec-
tively. The optimal solution u*(t) is

w*(t) = -RI ()BT K (1)z"(t) — RTI(OBT(1)M(1),
(24)
where £7(¢) is the optimal state trajectory of the closed-
loop system (14).

step 2 Consider constructing a subset [' € T of the robust
control law. If the robust control law v € T is identical to
u* (), the state trajectory of the control system is z*(t),
that is, the subset T is

L = {veTh(tz"(t) =
—~RIBT()K ()= (t) — R™Y () BT()M (1))
(285)
Therefore, we construct the following form of the robust
control law ¥(t, z(t)), which belongs to T,

Wt z(t)) = —R(OBT)KR()z(1)
—RY()BT()M(2) (26)
+p(t)(z(t) - 2*(1)).

step 3 Then, we consider the following optimal control prob-
lem, called Problem B, to seek the condition which shonld
be satisfied by p(t).

mviu J(v), j(v) = —J(z,7,v), (27)



st (1) A(t)z(t) + B(t)v(t, z(t)) + D(t)v(t)
I(io) = Iy, 1€ [to,t!].

For this problem, by applying Pontryagin’s minimum
principle, we find that Hamiltonian Hp is

Hp = —3(zT(1)Q(1z(t) + uT (1) R(t)u(t))
+ ABO(AMz(t) + B()y(t, 2(1)) + D(t)o(t))
(28)
where the robust conmtrol law (t,z(t)) € T is given by
(26) on time interval [to,5]. Then the adjoint equation
corresponding to Hp (28) is

Ap(t) = (p(t) - RY()BT)K ()T
x(R(1)¥(t,2(1)) - BT()A5(1)) (29)
+Q(t)z(t) ~ AT()Ap(1),

)\E(tf)=0, tE[to,t]],

where K(t) is the solution of Riccati-type matrix differ-
ential equation (15).

Minimization of Hamijtonian Hp (28) with respect to u(t)
yields that

o, if n(t) <0
vi(t)=9Q p(e<p<B) i n(t)=0 (30)
B, if n(t) >0

Here, the switching function 7(t) are defined by the fol-
lowing form.
(1) = A5 D(1). (31)
In order to find the condition which are satisfied by (t),
such that a certain value J(z",u*,v*) of cost functional
(11) corresponding to the most favorable pair (u*,v*) can
be guaranteed by the robust control law v(t,z(t)), we
must ensure that £*(1), v*(t) and v*(t) which is given by
upper bound £ are the solution of Problem B. Since the
optimal state trajectory z*(t) of Problem A and the state
trajectory z(t) of Problem B will coincide, we can obtain
z(t) = z*(t) in (29) by Theorem 2. From (29), we obtain
the differential equation of the form
Ap(t) = (p(t) — R (OB (1)K (t))T
x(R(1)¥(t,z*(1)) - BT()Ap(1))  (32)
+Q(1)z*(t) — AT(1)Ap(1),
)\B(t!)zo, te [lo,tf].
Let
Ap(t) = P(t)e™(2) + S(2), (33)
where P(t) € R**", S(t) € R" are matrix and vec-
tor functions respectively whose components are contin-
uously differentiable on time interval [to, t/].
Therefore, from (32) and (33), we can obtain linear matrix
differential equations for P(t) and S(t) which are given
by (18) and (19). The condition with respect to switch-
ing function n(t) obtained by substituting (33) into (31)
represents the following form.

(P (1) + SNTD(t) <0 te€ [to, ). (34)

From the discussion above, we can obtain this theorem
under Condition 1. Q.E.D.

855

Theorem 2 If v*(t) is determined uniquely, we have z(t) =
z*(t) no matter how p(t) is selected.

Proof The differential equations of the closcd-loop systems

with respect to the optimal state trajectory z*(¢) and the
state trajectory z(t) are described by the following forms

respectively.
#(0) = (40 - BORPOBTOEO)s"0)
+ (D()v*(t) - BRI ()BT ()M (1)), '
i(t) = (A(t) - BOR™()BT (1)K (1)
- B(»)p(t)z() (36)
+ (D()v*(t) - BQRY()BT()M (1)
— B(t)p(t)z* (1)),

z*(t0) = 2(to) = 3o,  t € [to, 1],

Let z(t) denote a difference between z*(t) and z(t), that
is,
2(t) = =7 (1) — =(2). {37)

Then, we can readily obtain the differcntial equation of
the form

&(1,10) = A(1)D(t, 1), (38)
®(to,t0) =1, tE€[to,ty],

where ®(t,19) is the transition matrix for z(¢) and [ is
identity matrix. A(t) is the following matrix,

A() = A(t) -~ B@RTIOBT(K (1) + B(D)p(t). (39)

2(t) is obtained by the solution of the differential equation
(38) as
2(t) = ®(t, t0)z(to), (40)

#(to) = z*(20) ~ (%) = 0.

Therefore, z(t) which presents the difference between
z*(t) and z(t) is identically zero, that is, it is satisfied
that £*(2) is identically equal to z(2). Q.ED.

Remark 2 For Theorem 1, the upper bound v*(t) = 8 is as-
sumed to be the most favorable value for the system de-
signer. Under this assumption, the condition (17) which
is satisfied by the robust control law {1, z(1)) are derived.
This theorem is also effective for tlie low bound o. How-
ever, for other most favorable value v*(1) = u (o0 < p
< B), we may use the condition to seek singular control,
that is,

AlHp 0 d ( BHB)
dv ~ 7 dt\ du
Then, we may determine some conditions to be satisfied

for the robust control law (¢, z(t)) in this case.
In next section, a numerical illustrative example is given. It
will be shown from this numerical example that the method

is effective and feasible for practical control problems.

4. NUMERICAL EXAMPLE



A system considered in this section is described by

#(t) = 2z(t) + u(t) + v(2), (0) = 10, te[0,2]. (41)

The cost functional is given by

1 2
Hz,u,0) = 5/ (522(1) + w(1))dt. (42)
[}
In addition, there exists a closed bound € for a disturbance
v(t), and Q is given by
Q= {v(t) € R|—1 < v(t) < 1,t¢ [to, 5]} (43)
step 1 Determine the most favorable value J(z*, u*, v*) of the
cost functional (42). Firstly, we assumed that v* =1
which is upper bound, and find the optimal solutions w*(1)
and z*(t) corresponding to v*(¢). Then, the Riccati-type
and linear matrix differential equations are given by

K(t)= K*(t)-4K(t) -5, K(2)=0, te0,2],
(44)

M) =-2-K@O)M®)—-K(@1), M(2)=0, te[0,2],
(45)

and their solutions are shown in Fig.2.

K {1}

TN

2T M) \
— o
\ .
SN

; \\\\

9 4 + + + {
=] 8.5 1 1.5 2

t

Fig.2 The solutions K () of (44) and M(2) of (45).

10 4
x (0

Fig.3 The optimal state trajectory z*(t).
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Fig.3 and Fig.4 show the optimal solutions w*(t) and z*(?)
respectively.

-10 +

-20 4+

-39 4

—48 4

-5 4

—6a@ L

Fig.4 The optimal control input u*(t).

The most favorable value of cost functional (42) is com-
puted as

J(z*, u",v") = 268.81. (46)

step 2 The robust control law v(t, z(t)) is constructed by the
following form from (26).
¥t 2(1)) = (p(t) = K@)z () — p()z7(1). (47)

step 3 The linear matrix differential equations (18) and (19)

are given by

P(1) = —4P(t)+ P(OK({) +5 (18)
=(p(t) — K()(K (1) + P(2))
P(2y=0, tel0,2)
Sty = —25(t) — P(1)(1 — M(3)) (49)
—(p(t) — K(O)M (@) +5()
s(2)=0, telo,2).
If we select
p(t) = —2K(1), (50)

then the solutions P(t) and S(t) of differential equations
(48) and (49) respectively are shown in Fig.5.

S (1)

Fig.5 The solutions P(t) of (48) and S(t) of (49).



We confirm that the following condition is satisfied.

M)z (t)+ S(t) < 0. (51)
Therefore, we have the robust control law y(t, z(t)) de-
scribed by

y(t,z(1)) = 3K (1)z(1) — M(1) + 2K (1)z"(2).  (52)
Here, in order to confirm numerically that the robust
control law v(t,z(t)) (52) can guarantee J(z,7v,v) <
J(z*,u*,v"), we will have a simulation with respect to
the following disturbance.

v(t) = sin(7t). (53)

The disturbance v(t) assumed by this form is belongs to
the set €2 (43). The state trajectory z(t) and the robust
control faw v(¢, z(t)) (52) corresponding to (53) are shown
in Fig.6 and Fig.7 respectively.

x (t)

84

6+

44

21

e + + £ ‘
a.s 1 1.5 2

{ .
2l

Fig.6 The state trajectory z(t)
with the disturbance (53).

18 ¢

-18 4

-30 +

-4 4

“Se4 gt A))

—g@ 1

Fig.7 The robust control law (¢, z(t))
with the disturbance (53).

The value of the cost functional J(z,v,v) is

J(z,7,v) = 258.54 < J(z",u", v%). (54)
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5. CONCLUSION

In this paper, we consider the robust control problem for a
class of linear time-varying systems with bounded disturbance.
For this problem, we present an approach to design a robust
control law. This approach is based on such a consideration
that a most favorable value of cost functional for the system
designer can be guaranteed no matter how the disturbance
vary within given bound, that is, the value of cost functional
is suppressed under a certain value. Therefore, the bounded
disturbance has at least no bad effect on the value of cost
functional.

Here, for a numerical example, the disturbance described
by (53) are used only to simulate, because v(t) is unknown for
the system designer except its bound. Therefore, it is shown
from this derivation and this example that the approach de-
veloped here is effective and feasible for some practical control
problems of systems with bounded disturbance.

For the systems with bounded disturbance, our further re-
search 1s to guarantee the other properties, such as stability,

by making use of the robust control law.
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