• 제목/요약/키워드: Boundary-like region

검색결과 63건 처리시간 0.025초

An Analytical Model with Three Sub-Regions for $M_2$ Tide in the Yellow Sea and the East China Sea

  • Jung, Kyung-Tae;Park, Chang-Wook;Oh, Im-Sang;So, Jae-Kwi
    • Ocean Science Journal
    • /
    • 제40권4호
    • /
    • pp.191-200
    • /
    • 2005
  • In this study an analytical tide model of uniform width with three sub-regions is presented. The three-subregions model takes into account step-like variations in depths in the direction of the channel as a way to examine the $M_2$ tide of the East China Sea (ECS) as well as the Yellow Sea (YS). A modified Proudman radiation condition has been applied at the northern open head, while the sea surface elevation is specified at the southern open boundary. It is seen that, due to the presence of an abrupt change in depth, co-amplitude lines of the $M_2$ tide are splitted to the east and west near the end of the ECS shelf region. Variations in depths, bottom friction and the open head boundary conditions all contribute to the determination of formation of amphidromes as well as overall patterns of $M_2$ tidal distribution. It is seen that increasing water depth and bottom friction in the ECS shelf results in the westward shift of the southern amphidrome. There is however no hint at all of the well-known degenerated tidal pattern being formed. It is inferred that a lateral variation of water depth has to be somehow incorporated to represent the tidal patterns in ECS in a realistic manner. Regarding the radiation factor introduced by Fang et al. (1991), use of a value larger than one, possibly with a phase shift, appears to be a proper way of incorporating the reflected waves from the northern Yellow Sea (NYS).

Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰 (Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권1호
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

A likely exoplanet around F5 supergiant ${\alpha}$ Persei near the Cepheid instability strip

  • 이병철;한인우;박명구;김강민
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • To search for and study the nature of the long-periodic variations of massive stars, we have been carrying out a precise radial velocity (RV) survey for supergiants. Here, we present high-resolution RV measurements of ${\alpha}$ Per which lies near the Cepheid instability strip from November 2005 to February 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). The orbital solution yields a period of 129 days, a 2K amplitude of 80 m/s, and an eccentricity of 0.1. Assuming a possible stellar mass of 7.3 $M{\bigodot}$, we estimate the minimum mass for the planetary companion to be 7.5 MJup with the orbital semi-major axis of 0.97 AU. We do not find the correlation between RV variations and chromospheric activity indicator (Ca II H & K region). The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. These analyses suggest that ${\alpha}$ Per is a pulsating supergiant that hosts an exoplanet. If the 129 days variations of ${\alpha}$ Per do not come from an exoplanet but Cepheid-like pulsations, the theoretical boundary of the Cepheid instability strip may need to be extended to the bluer side.

  • PDF

회전코일 와전류신호를 이용한 증기발생기 곡관형 튜브의 축방향노치 신호의 특성 (Characteristics of Eddy Current Signals of Axial Notches in Steam Generator U-bend Tubes using Rotating Pancake Coils)

  • 김창수;문용식
    • 한국압력기기공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Steam generator tubes are critical boundary of the primary and secondary side in nuclear power plants. Eddy current testing is commonly used as the method of non-destructive testing for the safety and integrity of steam generator tubes in the nuclear power plants. Changes in the geometric shape act as a stress concentration factor likely to cause a defect during the steam generator operation. The mixed-signals with the geometric shape are distorted and attributes that are difficult to detect signals. An example is bending stress due to compression process at a U-bend occurring in the intrados region which has a small radius of curvature. The resulting change in the geometric shape may lead to a dent like occurrences. The dent can cause stress concentration and generates stress corrosion cracks. In this study, the steam generator tubes of nuclear power plant were selected to study for analysis of mixed-signal containing dent and stress corrosion cracks.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • 한국환경과학회지
    • /
    • 제13권11호
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계 (The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • 한국광학회지
    • /
    • 제14권6호
    • /
    • pp.613-622
    • /
    • 2003
  • 반도체 와이어 본딩(wire-bonding) 조립공정에 사용되는 검사용 다중배치 현미경 광학계를 설계하였다. 2배와 6배에 공통으로 사용되는 대물부를 통과한 광선은 광분할 프리즘으로 둘로 나뉘고 각각의 결상부에 의하여 물체의 주변부는 2배, 물체의 중심부는 6배로 결상하게 한다. 이 때 리드프레임의 와이어 구조 때문에 $\pm$3 mm의 높이차가 있어서 대물부에서 물체까지의 거리가 서로 다르다. 이러한 단차에 ,의해 물체거리가 바뀌더라도 동일한 결상 배율로 선명하게 관찰하기 위해 결상부를 기계 보정식 줌 렌즈와 같이 비선형 궤적으로 이동시켜야 한다. 이 궤적을 구하기 위해 가우스 괄호를 사용해 비선형 연립방정식을 세우고 풀었다. 또한 각 렌즈 군의 굴절능과 군간 간격을 구하는 군별 기초 설계는 등가렌즈에 대한 3차 수차 이론을 사용하였으며, 최종적으로 최적화 기법을 통하여 이러한 현미경 광학계를 얻었다.

경계핵밀도함수를 이용한 기상학적 가뭄지수의 빈도해석 (Frequency Analysis of Meteorologic Drought Indices using Boundary Kernel Density Function)

  • 오태석;문영일;김성실;박구순
    • 대한토목학회논문집
    • /
    • 제31권2B호
    • /
    • pp.87-98
    • /
    • 2011
  • 최근 지구온난화에 따른 기후변화로 홍수와 가뭄 같은 수문학적 재해가 과거에 비해 발생빈도와 크기가 변하고 있는 추세이다. 특히 가뭄은 긴 지속기간에 걸쳐 피해를 유발하므로 다른 수문학적 재해에 비해 보다 심각한 결과를 초래한다. 하지만 역설적으로 가뭄은 홍수와 달리 장기간에 거쳐 발생하므로 중요성과 심각성을 인식하기 어렵다. 따라서 가뭄의 발생에 대해 분석하고 그에 대한 대책을 마련하기 위해 여러 가지 가뭄의 종류 중 강수량과 가장 밀접한 관련이 있는 기상학적 가뭄에 대해 분석을 실시했다. 기상청에서 관측한 강수 및 온도자료를 이용하여 기상학적 가뭄지수인 팔머가뭄심도지수(Palmer Drought Severity Index), 표준강수지수(Standard Precipitation Index), EDI(Effective Drought Index)를 산정하였다. 그리고 산정된 가뭄지수를 비교분석하여, 실제 과거가뭄사상에 잘 부합되며, 일별로 지수 산정이 가능한 장점이 있는 EDI를 이용해 가뭄빈도해석을 실시하였다. 분석방법으로는 경계핵밀도함수를 이용해 EDI의 빈도해석을 실시하였다. 분석 결과, 대부분의 지점에서 봄철의 가뭄재현기간이 10년에서 20년 빈도 사이의 값을 나타내 다른 계절보다 봄에 가뭄이 잦음을 확인할 수 있었다. 또 영남지방과 남해안 일대의 재현기간이 상대적으로 더 짧게 나타나 지역적으로도 가뭄의 심도와 재현기간에 차이가 있음이 확인되었다.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제11권2호
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.