• 제목/요약/키워드: Boundary layer height

Search Result 213, Processing Time 0.034 seconds

Development of a High-Resolution Near-Surface Air Temperature Downscale Model (고해상도 지상 기온 상세화 모델 개발)

  • Lee, Doo-Il;Lee, Sang-Hyun;Jeong, Hyeong-Se;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.473-488
    • /
    • 2021
  • A new physical/statistical diagnostic downscale model has been developed for use to improve near-surface air temperature forecasts. The model includes a series of physical and statistical correction methods that account for un-resolved topographic and land-use effects as well as statistical bias errors in a low-resolution atmospheric model. Operational temperature forecasts of the Local Data Assimilation and Prediction System (LDAPS) were downscaled at 100 m resolution for three months, which were used to validate the model's physical and statistical correction methods and to compare its performance with the forecasts of the Korea Meteorological Administration Post-processing (KMAP) system. The validation results showed positive impacts of the un-resolved topographic and urban effects (topographic height correction, valley cold air pool effect, mountain internal boundary layer formation effect, urban land-use effect) in complex terrain areas. In addition, the statistical bias correction of the LDAPS model were efficient in reducing forecast errors of the near-surface temperatures. The new high-resolution downscale model showed better agreement against Korean 584 meteorological monitoring stations than the KMAP, supporting the importance of the new physical and statistical correction methods. The new physical/statistical diagnostic downscale model can be a useful tool in improving near-surface temperature forecasts and diagnostics over complex terrain areas.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

The Numerical Study on the Ventilation of Non-isothermal Concentrated Fume (수치해석적 방법을 이용한 비등온 고농도 연무의 배기량 산정에 관한 연구)

  • Lim, Seok-Chai;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.534-543
    • /
    • 2008
  • The experimental study with the prototype provides more acceptable data than the others. But there are so many limited conditions to perform the experimental study with the prototype. So the theoretical similitude with the scaled model and the numerical study with the CFD method have been chosen alternatively to analysis the fume movement. In this study, the ventilation was estimated from the results of the numerical study based on the experimental results as the boundary conditions. The grid A and B were same size and shape with the models which was used in the experimental study and consisted with 163,839, 122,965 cells respectively. The height of the fume layer was estimated form the mole fraction of fume components and the ventilation was determined by the velocity and temperature of the fume. The results of this study showed that the fume movements estimated from the numerical study are enough to apply to the prototype if there are proper heat loss correction factors. The numerical study is easier to change study conditions and faster to get results from the study than the experimental study. So if we find some proper heat loss correction factors, it's possible to execute the various and advanced study with the numerical study.

Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula (수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구)

  • Park, Soon-Young;Lee, Soon-Hwan;Lee, Hwa Woon;Kim, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.669-680
    • /
    • 2013
  • Ozone sensitivity analysis with respect to $NO_x$ is conducted around the south-eastern area of the Korean Peninsula. WRF-CMAQ modeling system is used to simulate a local circulation and high ozone episode day. To analyze the sensitivity, the adjoint model for CMAQ is adopted in this study. The purpose of current study is to investigate the location that affects a day time ozone concentration of these receptors on the high ozone episode day. Adjoint sensitivity analysis for Daegu shows two areas of influence. One is the range from the neighboring location to Pohang and it affects mainly on the same day as receptor time. The other is the remote south-eastern area from Daegu. This remote influence area suggests that $NO_x$ emitted on the previous day can change the ozone concentration at receptor time. The influence area for Busan, on the other hand, is originated only from the emission on the previous day because the sea-breeze occurred on the episode day makes low influence of surrounding emission. The cross sectional analysis reveals that $NO_x$ advection is important not only near the surface of land but also around the height of boundary layer.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days (황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석)

  • Moon, Yun Seob;Koo, Youn Seo;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

The KALION Automated Aerosol Type Classification and Mass Concentration Calculation Algorithm (한반도 에어로졸 라이다 네트워크(KALION)의 에어로졸 유형 구분 및 질량 농도 산출 알고리즘)

  • Yeo, Huidong;Kim, Sang-Woo;Lee, Chulkyu;Kim, Dukhyeon;Kim, Byung-Gon;Kim, Sewon;Nam, Hyoung-Gu;Noh, Young Min;Park, Soojin;Park, Chan Bong;Seo, Kwangsuk;Choi, Jin-Young;Lee, Myong-In;Lee, Eun hye
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.119-131
    • /
    • 2016
  • Descriptions are provided of the automated aerosol-type classification and mass concentration calculation algorithm for real-time data processing and aerosol products in Korea Aerosol Lidar Observation Network (KALION, http://www.kalion.kr). The KALION algorithm provides aerosol-cloud classification and three aerosol types (clean continental, dust, and polluted continental/urban pollution aerosols). It also generates vertically resolved distributions of aerosol extinction coefficient and mass concentration. An extinction-to-backscatter ratio (lidar ratio) of 63.31 sr and aerosol mass extinction efficiency of $3.36m^2g^{-1}$ ($1.39m^2g^{-1}$ for dust), determined from co-located sky radiometer and $PM_{10}$ mass concentration measurements in Seoul from June 2006 to December 2015, are deployed in the algorithm. To assess the robustness of the algorithm, we investigate the pollution and dust events in Seoul on 28-30 March, 2015. The aerosol-type identification, especially for dust particles, is agreed with the official Asian dust report by Korean Meteorological Administration. The lidar-derived mass concentrations also well match with $PM_{10}$ mass concentrations. Mean bias difference between $PM_{10}$ and lidar-derived mass concentrations estimated from June 2006 to December 2015 in Seoul is about $3{\mu}g\;m^{-3}$. Lidar ratio and aerosol mass extinction efficiency for each aerosol types will be developed and implemented into the KALION algorithm. More products, such as ice and water-droplet cloud discrimination, cloud base height, and boundary layer height will be produced by the KALION algorithm.