• 제목/요약/키워드: Boundary Element Analysis

검색결과 1,888건 처리시간 0.028초

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

임의의 경계조건을 갖는 철근 콘크리트 선형판의 해석 -제1보 개각의 영향 (An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (I) - Part I Effects of open-angle -)

  • 조진구
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.94-103
    • /
    • 1991
  • This study was carried out to investigate the engineering characteristics of the R.C circular ring sector plate with various boundary conditions and then to propose a rational and paraical method for application of finite element method to R.C structures. The stiffness matrix of the circular ring sector plate was obtained by using the multi-base coordinate system in which the base-coordinate systems were constructed for each nodal point of the quadrilateral element in order to reflect the complicated boundary conditions conveniently and correctly. The R.C element stiffness matrix was constructed by adding the stiffness coefficients of the steel-bar element into the plate bending element stiffness matrix. Herein, the steel-bar element was treated as the common beam element. Using the above method, the effects of steel-bar can be considered without increasing of the numbers of element and nodal points.

  • PDF

유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석 (A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately)

  • 임재원
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권7호
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

A boundary element method based on time-stepping approximation for transient heat conduction in anisotropic solids

  • Tanaka, Masa;Matsumoto, T.;Yang, Q.F.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.61-72
    • /
    • 1996
  • The time-stepping boundary element method has been so far applied by the authors to transient heat conduction in isotropic solids as well as in orthotropic solids. In this paper, attempt is made to extend the method to 2-D transient heat conduction in arbitrarily anisotropic solids. The resulting boundary integral equation is discretized by means of the boundary element with quadratic interpolation. The final system of equations thus obtained is solved by advancing the time step from the given initial state to the final state. Through numerical compuation of a few examples the potential usefulness of the proposed method is demonstrated.

원공(圓孔)에 접근(接近)하는 균열(龜裂)이 있는 판(板)이 경계요소해석(境界要素解析) (Boundary Element Analysis of Plate with Crack Approaching Circular Holes)

  • 양창현;김일곤
    • 대한토목학회논문집
    • /
    • 제7권1호
    • /
    • pp.103-110
    • /
    • 1987
  • 구조물(構造物)에 발생(發生)한 균열(龜裂)이 원공(圓孔)에 접근(接近)할 때 원공(圓孔)과 균열선단(龜裂先端)에서는 큰 응력집중현상(應力集中現象)이 생긴다. 이러한 구조물(構造物)의 응력집중(應力集中)에 대한 수치해석방법(數値解析方法)으로 지금까지 주로 유한요소법(有限要素法)이 사용(使用)되어 왔으나 본 연구(硏究)에서는 유한요소법(有限要素法)에 비(比)해 입력자료(入力資料)와 계산시간(計算時間)을 현저히 줄일 수 있는 경계요소법(境界要素法)(boundary element method)을 시도(試圖)하였다. 두개의 원공(圓孔)사이에 균열(龜裂)이 있는 평판(平板)을 모델로 채택하여 경계요소법(境界要素法)으로 구한 해(解)를 Newman에 의한 경계선점법(境界選點法)(boundary collocation method)의 해와(解) 비교(比較)하였고 원공(圓孔)과 균열선단(龜裂先端)에서 역학적(力學的) 거동(擧動을 구명(究明)하였다.

  • PDF

Analysis of Three Dimensional Crack Growth by Using the Symmetric Galerkin Boundary Element Method

  • Kim, Tae-Soon;Park, Jai-Hak
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.17-22
    • /
    • 2003
  • In order to analyze general three dimensional cracks in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. A crack is modelled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.

Boundary element analysis of singular thermal stresses in a unidirectional laminate

  • Lee, Sang Soon;Kim, Beom Shig
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.705-713
    • /
    • 1997
  • The residual thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down to room temperature were studied. The matrix material was assumed to be thermorheologically simple. The time-domain boundary element method was employed to investigate the nature of stresses on the interface. Numerical results show that very large stress gradients are present at the interface corner and this stress singularity might lead to local yielding or fiber-matrix debonding.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

역문제에 의한 스파이얼 베벨기어의 해석 (Analysis of Spiral Bevel Gear by Inverse Problem)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.85-95
    • /
    • 2001
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spiral bevel gear , using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF