• Title/Summary/Keyword: Bouc-Wen

Search Result 58, Processing Time 0.021 seconds

Research on Coupling Control of Adjacent Buildings under Multiple Hazards (다중재난하중을 받는 인접건물의 연결제어에 대한 연구)

  • Kwag, Shinyoung;Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.36-41
    • /
    • 2016
  • In this study, numerical analyses were used to investigate the performance of a coupling control method for the dynamic responses of adjacent buildings under multiple hazards. Numerical simulations were done using the earthquake loads of regions with strong seismicity in Los Angeles, California, and the wind loads in regions with strong winds in Charleston, North Carolina. The artificial earthquake and wind loads were made using SIMQKE and Kaimal Spectrum based on ASCE 7-10. Ten-story and twenty-story adjacent buildings were selected as example structures, and nonlinear hysteretic dampers were used to connect them. The Bouc-Wen model was used to model the nonlinear hysteretic dampers. The results show that the proposed control method could effectively reduce the dynamic responses, and the optimal control designs were different for each hazard.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Hysteresis Model of Damping Forces of MR Damper for a Passenger Car (승용차용 MR 댐퍼의 댐핑력 이력현상 모델)

  • 이순규;최승복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.189-197
    • /
    • 2001
  • This paper presents hysteresis models of damping forces of a magneto-rheological (MR) damper which is applicable to a middle-sized passenger vehicle. After manufacturing a cylindrical type of the MR damper, its field-dependant damping force and hysteresis behavior are experimentally evaluated. Three different models ; Bingham model, Bouc-Wen model and Polynomial model are provided to predict the hysteretic damping force. The damping force characteristics predicted from three different models are compared with the measured results under various excitation conditions.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Damping updating of a building structure installed with an MR damper

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.695-705
    • /
    • 2013
  • The purpose of this paper is to identify through experiments the finite element (FE) model of a building structure using a magnetorheological (MR) fluid damper. The FE model based system identification (FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent damping matches well with the experimentally obtained damping.

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.

Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model (마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

Seismic Response Control of Nonlinear Hysteretic Structures Using Tuned Mass Damper (동조질량감쇠기를 이용한 비선형이력 구조물의 지진응답제어)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Lee, Joung-Woo;Choi, Ki-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.206-209
    • /
    • 2006
  • This study presents the performance evaluation of a tuned mass damper (TMD) for controlling seismic responses of the nonlinear hysteretic structure represented by a Bouc-Wen model, considering that the general reinforce concrete building structures subject to earthquake load show nonlinear hysteretic behavior. Numerical analysis result indicates that the performance of a passive TMD of which design parameters are optimized for a elastic structure deteriorates when the hysteretic portion of the structural responses increases, while a semi-actively operated TMD shows about 15-40% more response reduction than the TMD.

  • PDF

Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers

  • Lacarbonara, Walter;Cetraro, Marek
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-345
    • /
    • 2011
  • In this paper, a visco-hysteretic vibration absorber (VA) is proposed to increase the flutter speed of an airfoil and enhance damping in the pre- and post-flutter regimes. The passive system consists of a parallel arrangement of a dashpot and a rateindependent hysteretic element, represented by the Bouc-Wen differential model. The equations of motion are obtained and various tools of linear and nonlinear dynamics are employed to study the effects of the visco-hysteretic VA in the pre- and postflutter ranges.

New Dynamic Model of Large-Scale 20-Ton MR Fluid Damper (대용량 20톤 MR 유체 감쇠기의 새로운 동적 모델)

  • ;;Yang, Guangqiang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.141-148
    • /
    • 2002
  • MR 유체 감쇠기는 구조물의 진동을 감소시키기 위한 가장 유망하고 새로운 제진 (制振) 장치 중 하나이다. 이 장치는 기계적인 단순성, 높은 동적 범위, 적은 전력 요구량, 커다란 감쇠 능력, 강인성 등의 장점을 가지고 있기 때문에, 토목 구조 시스템의 내진(耐震) 및 내풍(耐風) 성능을 향상시키는데 매우 유용하다. 많은 연구자들이 MR 유체 감쇠기의 유사-정적 모델을 연구했지만 그 모델이 감쇠기의 설계를 위해서는 유용하다고 하더라도, 동적 하중에 대한 감쇠기의 거동을 모사하는 데는 충분하지 않다. 논문에서는 대용량 20톤 MR 유체 감쇠기의 동적하중에 대한 응답 해석 결과를 이용하여, Bouc-Wen 모델을 기반으로 하는 새로운 역학적 모델을 제안하였다. 이 모델은 MR 유체의 stiction현상과 관성 및 shear thinning 효과를 잘 묘사한다. 또한, 제안된 MR 유체 감쇠기의 동적 모델이 실험 결과와 매우 잘 일치함을 보였다.

  • PDF