KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4176-4197
/
2020
Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.
온라인 게임에서 오토 프로그램 또는 봇 프로그램으로 인하여 다양한 게임 서비스 피해사례가 발생하고 있다. 특히, 게임 머니 및 아이템의 비정상적인 수집은 게임이 가지는 본연의 재미를 잃어버리게 되고, 궁극적으로 게임 생명주기에 결정적 악영향을 미치게 된다. 본 논문은 게임 봇 감지를 위해 게임 행위 변화 패턴을 수집하고 분석하여 봇 탐지 방법에 적용한다. 인간의 게임 행위 변화 정보와 봇의 게임 행위 변화 정보를 이용하여 유사정도를 측정하고, 봇 탐지 기법에 활용하는 것이다. 실험에서는 서비스 중인 온라인 게임을 이용하여 사용자와 봇의 모델을 생성하고 유사성을 판별하였으며 적절한 결과를 확인하였다.
Game bots are illegal programs that facilitate account growth and goods acquisition through continuous and automatic play. Early detection is required to minimize the damage caused by evolving game bots. In this study, we propose a game bot detection method based on action time intervals (ATIs). We observe the actions of the bots in a game and identify the most frequently occurring actions. We extract the frequency, ATI average, and ATI standard deviation for each identified action, which is to used as machine learning features. Furthermore, we measure the performance using actual logs of the Aion game to verify the validity of the proposed method. The accuracy and precision of the proposed method are 97% and 100%, respectively. Results show that the game bots can be detected early because the proposed method performs well using only data from a single day, which shows similar performance with those proposed in a previous study using the same dataset. The detection performance of the model is maintained even after 2 months of training without any revision process.
MMORPG (Massively Multiplayer Online Role Playing Game) 시장은 급격히 증가하고 있으며 더불어 많은 발전을 이루고 있다. 하지만 그와 동시에 많은 게임 피해사례들이 증가하고 그 사례 또한 매우 다양화되고 있다. 그 중에서도 '봇(Bots)'은 사용자의 조작 없이 자동으로 작동하면서 게임의 몰입도 뿐만 아니라 보안 측면에서도 맡은 영향을 주고 있다. 따라서 게임 제공 업체에서는 클라이언트 단에서 packet을 분석하여 봇를 분별하려 하지만 클라이언트 단에는 사용자의 조작이 용이하므로 그 정확성이 떨어진다. 본 논문에서는 게임 서버 내에서 얻을 수 있는 사용자의 행동 데이터를 분석함으로써 실제 사용자 및 봇의 행동 패턴을 모델링하고 이를 비교하여 봇 검출에 적용하는 방법을 제안한다. 이 방법을 이용하여 보다 향상된 비교 모델을 완성 하였다.
최근 온라인 게임 산업이 급속도로 확장되었다. 하지만, 온라인 게임에서 봇 프로그램으로 인하여 다양한 게임 서비스 피해사례가 발생하고 있다. 특히, 게임 머니 및 아이템의 비정상적인 수집은 게임이 가지는 본연의 재미를 잃어버리게 하고, 궁극적으로 게임의 생명주기에 결정적으로 악영향을 미치게 된다. 본 논문은 게임 로그 데이터의 플레이 패턴을 이용한 봇 탐지 방법을 제안한다. 인간 플레이어로부터 봇과 차별화된 모델을 만들기 위해 인간 플레이어의 행동뿐만 아니라 봇 데이터도 분석에 활용한다. 실험에서는 서비스 중인 온라인 게임을 이용하여 사용자와 봇의 모델을 생성하고 유효한 결과를 확인하였다.
온라인 소셜 네트워크 서비스 중 하나인 트위터는 가장 보편적으로 사용되는 마이크로 블로그인데, 트위터의 개방적 구조로 인해 자동화 프로그램인 트윗 봇이 많이 생성되고 있다. 이 트윗 봇은 적법한 봇과 악성 봇으로 분류되는데, 이 중 악성 봇은 일반 사용자들에게 많은 양의 스팸 정보나 유해한 컨텐츠를 배포하기 때문에 트윗 봇을 검출하는 작업은 반드시 필요하다. 기존 연구에서는 시간적 정보를 활용하여 사람과 트윗 봇을 분류하였다. 본 논문에서는 사용자들의 고 정밀 위치 정보를 알려주는 공간 태그된 트윗 정보를 활용하여 트위터 사용자들의 정확한 위치와 트윗 전송시각을 알아낸 후, 각 사용자의 시공간 엔트로피를 계산하여 트윗 봇을 검출하는 개선된 두 단계 알고리즘을 제안한다. 주요 결과로써, 시간 정보만을 이용한 기존 연구결과보다 각 신뢰도별 봇 검출 확률 및 거짓 경보 확률이 모두 우수하게 나타난다.
온라인 게임에서 게임 봇의 사용은 개인정보 탈취, 계정도용의 보안 문제를 발생시킨다. 또한, 게임 봇은 게임 내재화를 불공정하게 수집하여 게임 콘텐츠의 빠른 소비와 정당한 게임 사용자에게 상대적 박탈감을 주어 게임시장 침체를 일으킨다. 본 연구에서는 실제 온라인 게임 내 캐릭터의 성장 과정 분석을 통해 성장 유형을 정의하고, 성장 유형에서 게임봇을 탐지 및 하드코어 유저와 봇을 분류하는 프레임워크를 제안한다. 실제 게임 데이터에 제안한 프레임워크를 적용하여 5가지로 성장 유형을 분류하였고, 93%의 정확도로 봇 탐지 및 하드코어 유저와 봇을 구분하였다. 또한 기존 연구에서 봇으로 탐지되었던 하드코어 유저를 구분해내고, 게임 봇을 성장 전에 사전 탐지함으로써 향상된 성능을 보였다.
An approach for game bot detection in massively multiplayer online role-playing games (MMORPGs) based on the analysis of game playing behavior is proposed. Since MMORPGs are large-scale games, users can play in various ways. This variety in playing behavior makes it hard to detect game bots based on play behaviors. To cope with this problem, the proposed approach observes game playing behaviors of users and groups them by their behavioral similarities. Then, it develops a local bot detection model for each player group. Since the locally optimized models can more accurately detect game bots within each player group, the combination of those models brings about overall improvement. Behavioral features are selected and developed to accurately detect game bots with the low resolution data, considering common aspects of MMORPG playing. Through the experiment with the real data from a game currently in service, it is shown that the proposed local model approach yields more accurate results.
불법 프로그램을 이용한 게임 내 봇은 개인에서 조직으로 확장되고 있으며, 불량조직인 작업장을 통해 온라인 게임 산업에 심각한 문제를 야기하고 있다. 게임 봇을 효율적으로 관리하고 많은 게임머니를 취득하기 위해, 게임 봇들을 온라인 게임 내 소셜 커뮤니티인 길드로 구성하여 봇 길드 활동을 하는 작업장이 존재한다. 게임 사업자들은 게임 봇 탐지 알고리즘을 이용해 봇을 탐지하고 있지만, 이러한 탐지 알고리즘은 작업장의 일부만 탐지가 가능하다. 본 논문에서는 일반 길드와 봇 길드의 특징을 추출하여 분석하고, 봇 길드로 활동하는 작업장을 탐지 할 수 있는 방법을 제안한다. 봇 길드와 일반 길드를 구분하기 위해 개인거래와 경매장 거래, 채팅 패턴을 분석하고, 분석한 결과를 중심으로 봇 길드를 탐지할 수 있었다. 본 논문에서 제시한 기법을 국내 유명 온라인 게임의 실제 데이터 샘플에 적용한 결과, 효율적으로 봇 길드를 탐지해 낼 수 있음을 확인 할 수 있었다.
온라인 소셜 네트워크 서비스 중 하나인 트위터는 가장 보편적으로 사용되는 마이크로 블로그인데, 트위터의 개방적 구조로 인해 자동화 프로그램인 트윗 봇이 많이 생성되고 있다. 이 트윗 봇은 적법한 봇과 악성 봇으로 분류되는데, 이 중 악성 봇은 일반 사용자들에게 많은 양의 스팸 정보나 유해한 컨텐츠를 배포하기 때문에 트윗 봇을 검출하는 작업은 반드시 필요하다. 기존 연구에서는 시간적 정보를 활용하여 사람과 트윗 봇을 분류하였다. 본 논문에서는 먼저 사용자들의 고 정밀 위치 정보를 알려주는 공간 태그된 트윗 정보를 활용하여 트위터 사용자들의 정확한 위치를 알아낸다. 그리고, 각 사용자의 공간 변수에 대한 엔트로피 값 및 사용자의 장치 정보를 사용하여 새로운 봇 검출 알고리즘을 제안한다. 주요 결과로써, 시간 정보만을 이용한 기존 연구결과보다 각 신뢰도별 봇 검출 확률 및 거짓 경보 확률이 모두 우수하게 나타난다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.