Journal of the Korean Data and Information Science Society
/
제15권3호
/
pp.625-632
/
2004
We consider the empirical Bayes confidence intervals that attain a specified level of EB coverage for the scale parameter in the Burr distribution under type II censoring data. Also, we compare the coverage probabilities and the expected confidence interval lengths for these confidence intervals through simulation study.
순서쌍으로 주어진 자료 $(x_i, y_i), i=1,2,\cdots,n$ 들에 대한 독립변수와 관련된 추정은 회귀분석과는 달리 교정(calibration)이라고 불리워진다. 본 논문에서는 정규상 등과 같은 가정을 하지않고 비모수적인 커널방법을 이용하여 교정함수를 추정하고 추정된 교정함수의 붓스트랩 신뢰대를 이용한 독립변수의 구간추정을 제안하고자 한다. 교정과 커널방법에 대해 설명하였으며 독립변수의 추정에 대한 문헌적 고찰과 함께 붓스트랩 신뢰대에 대하여 첨언하였고 실제 자료를 통하여 다른방법과 비교, 분석하였다.
비선형 시계열인 확률계수 자기회귀(random coefficient autoregressive; RCA) 모형에 대하여 여러 가지 방법을 이용한 추정량의 신뢰구간 비교하였다. RCA 모형에 대하여 자료의 분포를 가정하지 않아도 되는 Quasi 스코어 추정량과 Huber, Tukey, Andrew, Hempal 4가지 유계함수를 이용한 M-Quasi 스코어 추정량을 제시하였다. 이러한 추정량에 대하여 표준 붓스트랩 방법, 백분위수 붓스트랩 방법, 스튜던트화 붓스트랩 방법, 하이브리드 붓스트랩 방법을 이용한 신뢰구간을 구하였다. 모의실험을 통하여 RCA 모형의 오차항의 분포가 정규분포, 오염정규분포, 이중지수분포를 따를 때 Quasi 스코어 추정량과 M-Quasi 스코어 추정량들의 근사적 신뢰구간과 네가지 붓스트랩 방법을 이용한 신뢰구간을 비교하였다.
범주형 자료의 구조파악에 주로 이용되는 로짓모형에서 비모수적 방법을 이용한 모수의 신뢰구간추정과 가설검정 등의 통계적 추론에 대하여 살펴보았다. 모수에 대한 통계적 추론에서 정규분포에 근거한 모수적 방법(Wald 방법)보다는 붓스트랩 방법이나 임의순열을 활용한 비모수적 방법이 많이 활용되고 있다. 본 연구에서는 로짓모형의 모수에 대한 비모수적 추론방법으로 붓스트랩(bootstrap)과 임의순열(random permutation)의 두 방법을 고려하고 모의실험을 통하여 가설검정의 검정력과 신뢰구간추정의 포함확률을 비교하였고 사례분석을 다루었다.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.825-833
/
2013
온실가스 인벤토리 불확도 산정을 위해서는 인벤토리의 신뢰구간 추정이 필수적이다. 일반적으로 모수에 대한 신뢰구간 추정시에는 모집단이 정규분포를 따른다고 가정한다. 그러나 자료의 구조가 복잡해짐에 따라 정규분포가 아닌 비대칭형 자료, 즉 양의 왜도를 갖는 자료의 경우 기존의 정규분포를 가정한 신뢰구간 추정 방식은 적합하지 않다. 본 연구에서는 비대칭형 분포인 지수분포의 신뢰구간추정 방법으로 모수적인 방법과 비모수적인 방법에 대해 각각 비교분석하였다. 모의실험을 통한 신뢰구간 추정 결과를 바탕으로 범위확률, 신뢰구간 길이, 상대적 편의를 비교한 결과 모수적 방법 중에서 예상했던 대로 정확한 방법인 카이제곱방법이 신뢰계수와 유사한 범위확률을 보이고 상대적 편의도 작아 모수적 방법 중에서 신뢰구간 추정에 가장 적합한 것으로 나타났다. 마찬가지로 비모수적 방법 중에서는 표준화된 t-붓스트랩 방법이 가장 적합한 것으로 나타났다.
분산 성분 모형 하에서 분산 성분들의 함수에 대한 통계적인 추론, 특히 소표본 하에서의 신뢰구간에 대한 방법들은 오랜 기간에 걸쳐서 여러 가지 방법들이 개발되어져 왔다. 그 대표적인 방법이 Graybill and Wang(1980)에 의해 제안된 수정 대표본 방법에 의거한 신뢰구간 추정법이며 현재까지 다양한 실험계획 방법 하에서 분산 성분들의 여러 가지 형태의 함수들에 대하여 확장과 개량이 이루어져 왔다. 본 연구에서는 분산 성분 모형의 균형 실험 가정 하에서 분산 성분들의 선형 결합이 관심있는 모수일 때 분산 분석에 의해 얻어진 수정 대표본 신뢰구간의 실제 포함확률을 툴스트랩 보정을 이용하여 개선하는 방법에 대하여 논의한다. 붓스트랩 보정을 이용함으로서 신뢰구간의 포함 확률의 정도는 점근적 이차 차수까지 개선되며 특히 선형 결합의 계수들이 모두 양수이고 결합의 수가 증가할 경우 수정 대표본 신뢰구간의 포함확률이 주어진 신뢰계수보다 항상 커지게 되는 단점을 개선할 수 있음을 보인다. 제안된 붓스트랩 보정 신뢰구간의 효율을 소표본의 경우에 모의실험을 통하여 평가한다.
수리 가능한 시스템에 대한 고장시간을 표현하는 여러가지 형태의 통계적 모형이 최근 엔지니어들과 신뢰성분야 학자들의 많은 관심을 끌고 있다. 본 논문에서는 수리가능한 시스템의 신뢰성 증가를 나타내는데 유용하게 적용되는 power law process를 고려하고 특히 정시중단자료(time truncated data)인 경우 고장간격에 대한 신뢰구간을 붓스트랩 기법을 이용하여 구하고 이것을 Crow(1982)가 구한 기존의 신뢰구간과 비교 분석하였다.
p-값은 관측 표본과 관측 결과보다 심하게 대안가설의 방향으로 영가설을 이탈하는 표본들이 영가설 하에서 갖는 확률이다. p-값이 일정 ${\alpha}$(= 0:05)보다 작게 나타나면 연구자는 대안가설이 지지된 것으로 본다. 그런 경우라고 하더라도 그의 가설이 향후 연구에서 번복될 수 있는데 그 이유는 p-값이 표본에 따라 변동하는 통계량이기 때문이다. Boos와 Stefanski (2011)는 붓스트랩 방법으로 p-값의 예측분포를 구할 수 있음을 보였다. 그들은 그 분포의 상위 10-20% 분위수가 ${\alpha}$보다 작은가를 확인할 필요가 있음을 강조한다. 만약 그렇지 않은 경우에는 "지지"된 가설의 재현성이 문제될 수 있기 때문이다. 가설검정에서 일정 수준의 재현율을 확보하기 위해서는 표본의 증대가 요구된다. 이 연구는 k배 확대 붓스트랩 표본추출(boosted bootstrap sampling)로써 필요한 표본크기를 계산할 수 있음을 두 표본의 비교와 다중선형회귀의 수치 예에서 보인다. k 값을 정하기 위해서는 몇 차례 시행착오를 해야 하지만 계산적 부담은 크지 않다. 95% 신뢰구간은 독립적인 표본들로부터 같은 방식으로 산출되는 구간이 미지의 모수를 포함할 확률이 95%가 되도록 설정된다. 이 연구는 한 관측표본으로부터 얻어진 95% 신뢰구간 내 개별 점이 미래 연구의 신뢰구간에도 포함될 것인지 그 재현성을 붓스트랩 재표본들에서 평가한다. 이 연구는 개별 점에서 산출한 신뢰구간 재현율을 그래프로 보인다.
Journal of the Korean Data and Information Science Society
/
제7권1호
/
pp.93-104
/
1996
In this paper, Marshall and Olkin's bivariate exponential distribution is assumed for stress and strength model. We derive the asymptotic distributions and construct some approximate confidence intervals for P(X
Communications for Statistical Applications and Methods
/
제4권1호
/
pp.311-315
/
1997
In this note we consider confidence interval based on Kolmogorov-Smirnov statistic. In order to obtain confidence interval we need percentage points of the statistics. Bootstrap method is examined whether it is useful to determine the points. It is concluded that the method is useful for observations with many ties, whereas it gives less conserbative points for continuous distributions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.