• Title/Summary/Keyword: Boosting Algorithm

Search Result 161, Processing Time 0.027 seconds

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

A Study on the Dynamic Analysis and Control Algorithm for a Motor Driven Power Steering System

  • Yun, Seokchan;Han, Changsoo;Wuh, Durkhyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The power steering system for vehicles is becoming essential for supporting the steering efforts of the drivers, especially for the parking lot maneuver Although hydraulic power steering has been widely used for years, its efficiency is not high enough. The problems associated with a hydraulic howe. steering system can be solved by a motor driven power steering (MDPS) system. In this study, a dynamic model and a control algorithm for the ball screw type of MDPS system have been derived and analyzed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, two derivative gains are added to the conventional power boosting control algorithm. Through simulations, the effects of the control gain on the steering angle gain were verified in the frequency domain. The steering returnability and steering torque phase lag in on-center handling test were also evaluated in the time domain.

A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System (Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구)

  • 윤석찬;왕영용;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

An Improvement of AdaBoost using Boundary Classifier

  • Lee, Wonju;Cheon, Minkyu;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.

Development of The Irregular Radial Pulse Detection Algorithm Based on Statistical Learning Model (통계적 학습 모형에 기반한 불규칙 맥파 검출 알고리즘 개발)

  • Bae, Jang-Han;Jang, Jun-Su;Ku, Boncho
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.185-194
    • /
    • 2020
  • Arrhythmia is basically diagnosed with the electrocardiogram (ECG) signal, however, ECG is difficult to measure and it requires expert help in analyzing the signal. On the other hand, the radial pulse can be measured with easy and uncomplicated way in daily life, and could be suitable bio-signal for the recent untact paradigm and extensible signal for diagnosis of Korean medicine based on pulse pattern. In this study, we developed an irregular radial pulse detection algorithm based on a learning model and considered its applicability as arrhythmia screening. A total of 1432 pulse waves including irregular pulse data were used in the experiment. Three data sets were prepared with minimal preprocessing to avoid the heuristic feature extraction. As classification algorithms, elastic net logistic regression, random forest, and extreme gradient boosting were applied to each data set and the irregular pulse detection performances were estimated using area under the receiver operating characteristic curve based on a 10-fold cross-validation. The extreme gradient boosting method showed the superior performance than others and found that the classification accuracy reached 99.7%. The results confirmed that the proposed algorithm could be used for arrhythmia screening. To make a fusion technology integrating western and Korean medicine, arrhythmia subtype classification from the perspective of Korean medicine will be needed for future research.

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

Mean-Shift Object Tracking with Discrete and Real AdaBoost Techniques

  • Baskoro, Hendro;Kim, Jun-Seong;Kim, Chang-Su
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.282-291
    • /
    • 2009
  • An online mean-shift object tracking algorithm, which consists of a learning stage and an estimation stage, is proposed in this work. The learning stage selects the features for tracking, and the estimation stage composes a likelihood image and applies the mean shift algorithm to it to track an object. The tracking performance depends on the quality of the likelihood image. We propose two schemes to generate and integrate likelihood images: one based on the discrete AdaBoost (DAB) and the other based on the real AdaBoost (RAB). The DAB scheme uses tuned feature values, whereas RAB estimates class probabilities, to select the features and generate the likelihood images. Experiment results show that the proposed algorithm provides more accurate and reliable tracking results than the conventional mean shift tracking algorithms.

  • PDF

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

Vehicle Detection Scheme Based on a Boosting Classifier with Histogram of Oriented Gradient (HOG) Features and Image Segmentation] (HOG 특징 및 영상분할을 이용한 부스팅분류 기반 자동차 검출 기법)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.955-961
    • /
    • 2010
  • In this paper, we describe a study of a vehicle detection method based on a Boosting Classifier which uses Histogram of Oriented Gradient (HOG) features and Image Segmentation techniques. An input image is segmented by means of a split and merge algorithm. Then, the two largest segmented regions are removed in order to reduce the search region and speed up processing time. The HOG features are then calculated for each pixel in the search region. In order to detect the vehicle region we used the AdaBoost (adaptive boost) method, which is well known for classifying samples with two classes. To evaluate the performance of the proposed method, 537 training images were used to train and learn the classifier, followed by 500 non-training images to provide the recognition rate. From these experiments we were able to detect the proper image 98.34% of the time for the 500 non-training images. In conclusion, the proposed method can be used for detecting the location of a vehicle in an intelligent vehicle control system.