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An online mean-shift object tracking algorithm, which 
consists of a learning stage and an estimation stage, is 
proposed in this work. The learning stage selects the 
features for tracking, and the estimation stage composes a 
likelihood image and applies the mean shift algorithm to it 
to track an object. The tracking performance depends on 
the quality of the likelihood image. We propose two 
schemes to generate and integrate likelihood images: one 
based on the discrete AdaBoost (DAB) and the other 
based on the real AdaBoost (RAB). The DAB scheme uses 
tuned feature values, whereas RAB estimates class 
probabilities, to select the features and generate the 
likelihood images. Experiment results show that the 
proposed algorithm provides more accurate and reliable 
tracking results than the conventional mean shift tracking 
algorithms. 
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I. Introduction 

The objective of object tracking is to estimate the trajectory 
of an object in an image plane as it moves around a scene [1]. 
In other words, a tracker estimates the location of a target 
object throughout the frames in a video sequence. 

Object tracking is an essential element in various computer 
vision applications, including motion-based object recognition, 
human-computer interaction, and automatic vehicle navigation 
[1]. In [2], tracking is employed to enhance virtual reality 
experience by using human body movements to navigate and 
interact with a virtual world. Tracking is also important in 
surveillance systems [3]. Since surveillance systems produce a 
large amount of video data, an automatic algorithm is needed 
to index and retrieve this data. 

Mean-shift blob tracking is an approach to object tracking 
which estimates an object’s location in a frame by performing 
the mean-shift algorithm on a likelihood image of the frame 
[4]-[7]. A likelihood image is a gray scale image, where the 
brightness of a pixel represents the likelihood of its being a part 
of the object. A good likelihood image should have a bright 
area around the object being tracked, while the remaining area 
should be dark. 

The ensemble tracking algorithm in [7] attempts to obtain a 
good likelihood image for mean-shift blob tracking. It uses 
multiple weak classifiers to divide object pixels from 
background pixels in a feature space. The weak classifiers are 
combined into a strong classifier, using the adaptive boosting 
(AdaBoost) technique [8]. The strong classifier is then used to 
construct a likelihood image. 

An alternative approach is to use multiple features, instead of 
a single feature space. Collins and Liu [5] proposed using 
linear combinations of RGB color channels as a feature pool 
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and selecting the features for tracking based on two-class 
variance ratios. A likelihood image is generated for each 
selected feature, and the mean-shift algorithm is applied to 
estimate the object location. Each likelihood image produces 
an estimated location, and the median of these locations is 
taken as the final object location. In the mean-shift algorithm, 
the reliability of the estimated location greatly depends on the 
quality of the likelihood image. However, in [5], there are only 
a few likelihood images to track an object, and the tracker 
sometimes fails simply because there is no good likelihood 
image. In [6], features are selected using Bayesian error rates, 
and likelihood images are weighted based on the error rates to 
obtain a higher quality likelihood image. 

In this work, we propose selecting features from a feature 
pool using the AdaBoost technique and combining likelihood 
images for different features using confidence values. 
Specifically, we propose two online tracking schemes: one 
based on the discrete AdaBoost (DAB) [9] and the other based 
on the real AdaBoost (RAB) [8]. These schemes differ in the 
feature selection, the modeling of object and background, and 
the generation and integration of likelihood images. Note that 
both the proposed algorithm and ensemble tracking [7] use the 
AdaBoost technique to improve the performance of mean-shift 
blob tracking. However, the main difference is that the 
proposed algorithm uses multiple feature spaces with the same 
classifier, whereas ensemble tracking combines multiple 
classifiers in a single feature space. Experimental results show 
that the proposed algorithm provides higher quality likelihood 
images and achieves better tracking accuracy than the 
conventional algorithms in [5]-[7]. 

The rest of this paper is organized as follows. Section II gives 
an overview of the proposed algorithm, which consists of a 
learning stage and an estimation stage. The learning stage is 
described in section III, and the estimation stage is described in 
section IV. Section V presents and discusses experimental 
results. Finally, section VI concludes the paper. 

II. Overview 

The proposed tracking algorithm consists of two main 
stages: a learning stage and an estimation stage. In the learning 
stage, we select features and generate models for an object and 
the background. In the estimation stage, we compose a 
likelihood image, using the features and the models, and then 
apply the mean-shift algorithm to the likelihood image to 
estimate the object’s location. These two stages are interleaved 
to adapt to changes in the object’s appearance. The proposed 
algorithm belongs to the online tracking category, since the 
selected features and the models are continuously updated from 
the input video sequence itself.  

 

Fig. 1. The estimation stage and the learning stage are executed
iteratively. For the first frame, the estimation stage is not
performed, since the object location is assumed to be 
known. For the other frames, the object locations from the 
estimation stage are used to select features and generate 
the models of object and background in the learning stage.
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In this work, we execute the estimation stage and the 
learning stage for every frame by feeding the object location, 
produced in the estimation stage, to the learning stage as 
shown in Fig. 1. For the first frame, only the learning stage is 
carried out, since we assume that the object location in the 
first frame is available from a user or from an object detection 
scheme. We also assume that the object being tracked is 
always visible. If there is an occlusion, then the algorithm 
should be re-initialized when the object becomes visible 
again. Starting from the second frame, the estimation stage is 
performed and followed by the learning stage. However, note 
that the learning stage does not need to be applied for every 
frame, since the changes in object and background 
appearance are gradual in general. In other words, the 
learning stage can be applied for a selected set of frames by 
only using simple frame skipping [5] or the Gaussian model 
[6]. 

As in [5], the combinations of RGB channels are used as a 
feature pool F: 

{ }{ }1 2 3 1 2 3 -2, -1,0,1,2F = w R + w G + w B | w w w ∈, , .   (1) 

There can be 53 combinations, but we remove the abnormal 
combinations, where (w1, w2, w3) = k(0, 0, 0), and the 
redundant combinations, where  (w1, w2, w3) = k(w'1, w'2, w'3). 
Thus, the total number of features in the pool is reduced to 49. 

III. Learning Stage 

In the learning stage, we assume that the object location is 
known from a user or from the estimation stage. We select the 
features for tracking from the feature pool, and make the  
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Fig. 2. The center-surround approach is used to take samples of
object and background pixels. Here, w and h are the width
and the height of the object rectangle. 
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models of the object and background using those features. The 
features and the models are passed to the estimation stage for 
the next frame. 

We represent the object as a rectangle of fixed size and 
orientation. We adopt the center-surround approach [5] in 
sampling the object and background pixels. As shown in Fig. 2, 
it expands the object rectangle in order to form the background 
rectangle, from which the samples of background pixels are 
taken. In our implementation, the margin between the sides of 
the object rectangle and the background rectangle is set to 
0.2max(w, h), where w and h denote the width and the height 
of the object rectangle. 

The pixels within the object rectangle and the background 
rectangle are employed as training examples in the AdaBoost 
framework [8]-[10], and features are selected to minimize the 
probability of incorrectly classifying the training pixels into the 
object or background class. 

The features trained from the information in the current 
frame can be used to track the object in the next frame because 
the object movements between consecutive frames are usually 
small. Unlike the approach using a fixed set of features, the 
features in an online tracker only need to be locally and 
temporarily discriminative [5]. 

We use DAB [9] or RAB [8] to build an effective likelihood 
image from simple feature images. The feature selection and 
the model generation are carried out concurrently. Given a 
feature, we model the object and the background and evaluate 
the classification performance on training pixels. Features are 
iteratively selected by evaluating all features, choosing the best 
features, and updating the weights of training pixels. More 
specifically, we assign a weight to each pixel and choose the 
feature that minimizes the weighted misclassification error. 
Before the next iteration, we decrease the weights of correctly 
classified pixels and increase the weights of misclassified 
pixels. Thus, independence among the selected features is 
promoted and the performance of the selected features as a 
whole is improved. 

1. DAB Learning 

The weights of training pixels are initialized according to 
their spatial distances from the center of the object rectangle. 
Specifically, the weight for a pixel in the object rectangle is 
initialized by 

1– distance from center2 ,
diagonal of  object rectangle

×           (2) 

and the weight for a pixel in the background area is set by 

1– distance from center2 .
diagonal of  background rectangle

×         (3) 

These weights are then normalized so that the sum of 
weights in the object area is 0.5 and the sum of weights in the 
background area is 0.5. 

Each feature is evaluated based on how well it classifies the 
training pixels. The classification is performed as follows. First, 
we compute the normalized histograms for object pixels, p(k), 
and background pixels, q(k), in the feature image. In DAB, for 
simplicity, we do not consider the weights of pixels in the 
computation of the histograms. Second, we compute the tuned 
feature value L(k), which is defined as the log ratio of the object 
histogram and the background histogram: 

( )
( ){ }
( ){ }

max ,
log ,

max ,

p k
L k

q k

δ

δ
=             (4) 

where δ is a small fixed number to avoid computational 
overflows. Third, we use zero as the classification threshold. 
Pixels with positive tuned feature values are classified as the 
object, while pixels with negative values are classified as the 
background. The optimal threshold may not be zero. Although 
it can be found by examining the misclassification error for 
every possible threshold [6], we use the threshold 0 for 
simplicity. 

In the DAB learning stage, we take the positions of the object 
and background rectangles as input and produce a selection of 
features with confidence values. The algorithm to select T 
features from the feature pool F is carried out as follows: 

Step 1. Initialize the weights of object pixels, 1
obj, ,iw  and 

the weights of background pixels, 1
bg, ,jw  and normalize them 

so that the sums of object and background weights are 0.5 and 
0.5, respectively. 

Step 2. Repeat steps 2.1 to 2.4 for = 1, ,t T.  
Step 2.1. For each feature f in the pool F, compute the tuned 

feature values for the training pixels, classify the pixels, 
and then evaluate the misclassification error with 
respect to obj,

t
iw  and bg,

t
jw  
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obj, bg, ,t t t
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where I and J are, respectively, the sets of object pixels 
and background pixels that are misclassified. 

Step 2.2. Select the best feature ft that has the lowest error 

min .t
t ff

e e=  

The confidence ct of the selected feature is defined as 

1
log .t

t
t

e
c

e
−

=  

Step 2.3. Reduce the weights of correctly classified pixels by 
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Step 2.4. Remove the selected feature ft from the pool F 

F=F–{ft}. 

In DAB, the object in a selected feature ft is differentiated 
from the background through the tuned feature values Lt(k). 
These tuned feature values are stored to generate likelihood 
images in the estimation stage for the next frame. To 
summarize, the results of the DAB learning stage are the 
selected features ft with the corresponding confidences ct and 
the tuned feature values Lt(k). 

2. RAB Learning 

In RAB, the weights of training pixels are initialized in the 
same way as in DAB as described in section III.1. 

Again, a feature is evaluated based on how well it classifies 
training pixels. Whereas DAB makes a hard decision whether a 
pixel belongs to the object or background class by comparing its 
tuned feature value with a threshold, RAB softly expresses the 
classification result with a real number. We first compute the 
normalized object histogram p(k) and the normalized 
background histogram q(k) using the weights of training pixels. 
Specifically, instead of counting the number of pixels quantized 
to bucket k, we add up the weights of those pixels and normalize 
the sum to compute p(k) or q(k). Then, the classification result is 
expressed as a real value ranging from 0 to 1, given by 

( ) ( )
( ) ( )

,
p k

r k
p k q k

=
+

             (5) 

which is the estimated probability that a pixel belongs to the 
object class. Note that the pixels whose feature values belong 

to the same histogram bucket are tagged with the same real 
value. The confidence of the bucket-by-bucket classification is 
defined as 

( ) ( )
( )

1 log .
2 1

r k
c k

r k
=

−
             (6) 

The confidence c(k) approaches ∞ or -∞ as the probability 
r(k) becomes close to 1 or 0, respectively. On the other hand, 
c(k) is 0, when r(k) is 0.5. That is, a pixel has equal probability 
of belonging to the object class and the background class. 

The RAB learning algorithm to select T features from the 
feature pool F is carried out as follows: 

Step 1. Initialize the weights of training pixels, 1
iw , and 

normalize them as described in section III.1. 
Step 2. Repeat steps 2.1 to 2.4 for = 1, ,t T.  
Step 2.1. For each available feature f from the pool F, 

compute the normalized histograms ( )t
fp k  and 

( )t
fq k  using the weights t

iw . A pixel whose feature 
value is quantized to bucket k belongs to the object class 
with the estimated probability 

( ) ( )
( ) ( )

.
t
ft

f t t
f f

p k
r k

p k q k
=

+
 

The confidence value of bucket k is given by 

( ) ( )
( )

1 log .
2 1

t
ft

f t
f

r k
c k

r k
=

−
 

Step 2.2. Select the best feature ft that has the maximum sum 
of absolute confidences 

( )arg max .t
t ff

k

f c k= ∑  

Let ct(k) denote the confidence value of the selected 
feature ft for notational simplicity. 

Step 2.3. Update the weights 

( )1 exp ,t t
i i i tw w y c k+ ⎡ ⎤= −⎣ ⎦           (7) 

where the feature value of pixel i is assumed to be 
quantized into bucket k. Here, yi=1 if pixel i belongs to 
the object and yi=-1 otherwise. Note that an object pixel 
is correctly classified if it has a positive confidence value 
ct(k). Also, a correctly classified background pixel has a 
negative confidence. Thus, the purpose of yi in (7) is to 
reduce the weights of correctly classified pixels. Then, 
normalize the weights by 

1
1

1 .
t

t i
i t

ii

w
w

w

+
+

+
=
∑

 

Step 2.4. Remove the selected feature ft from the pool F 
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F = F–{ft}. 

Whereas DAB computes a confidence value for a whole 
feature, RAB specifies a confidence value for each histogram 
bucket of a feature. In RAB, the selected features ft and the 
corresponding confidence values ct(k) are passed to the 
estimation stage of the next frame. 

IV. Estimation Stage 

The object location is estimated by generating likelihood 
images based on the selected features in the last learning stage, 
combining them into a final likelihood image, and then 
performing the mean shift algorithm to the final likelihood 
image. The schemes to generate and combine likelihood 
images are different for DAB and RAB. 

1. DAB Estimation 

In the DAB learning stage, features ft, 1 ≤ t ≤ T, are selected, 
and their confidence values ct and tuned feature values Lt(k) are 
computed. Using this data, the estimation stage tracks the 
object location. 

First, we generate a binary likelihood image for each selected 
feature ft as shown in Fig. 3(a). The feature value of a pixel is 
quantized into bucket k. If the tuned feature value Lt(k) is less 
than the threshold 0, the pixel tends to be of the background 
class and is assigned the value of 0 in the likelihood image. On 
the other hand, if Lt(k) is positive, the pixel tends to be of the 
object class and is assigned the value of 1. This step is repeated 
for all selected features. 

Second, we combine the T likelihood images as shown in 
Fig. 3(b). The likelihood image for feature ft is weighted by the 
confidence value ct, and all the weighted likelihood images are 
summed up to make a single image. Then, pixel values less 
than 0.5 Σ ct are set to zero and the remaining values are scaled 
to the range [0, 255]. The obtained image serves as the final 
likelihood image. 

Third, we apply the mean-shift algorithm [4], [11], [12] to 
the final likelihood image to track the center of the object 
rectangle. The estimated center is initialized by the center of the 
object rectangle in the previous frame and is iteratively updated 
according to the mean-shift vectors, which point to the local 
maxima of the likelihood image. 

The mean-shift vector m  is given by 

( ) ( )
( )

i R

i R

x i l i
m = ,

l i
∈

∈

∑
∑

             (8) 

where R denotes a local window around the current center, 
( )x i  is the vector from the current center to pixel i, and l(i)  

 

Fig. 3. (a) Generation of a likelihood image and (b) integration of 
likelihood images in the DAB estimation stage.
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is the likelihood value of pixel i. The size of R is set to about 
90% of the object rectangle. The mean-shift algorithm 
terminates when the mean-shift vector becomes zero or the 
maximum number of iterations is reached. In this work, the 
maximum number of iterations is set to 20. 

2. RAB Estimation 

As shown in Fig. 4(a), we generate a likelihood image for 
each feature ft. First, we quantize the feature value of a pixel to 
bucket k. The confidence value ct(k) of the bucket becomes the 
brightness of the pixel in the likelihood image. This is repeated 
for all selected features. 

Then, as shown in Fig. 4(b), we sum the T likelihood images 
and normalize the brightness into the range [0, 255] to make 
the final likelihood image. During the normalization, negative 
values are set to zero. 

Finally, as in section IV.1, we apply the mean-shift algorithm 
to the final likelihood image to track the object location. 

V. Experiments 

We compared the performance of the proposed algorithm 
with that of Collins and Liu’s algorithm [5], Liang’s algorithm 
[6], and the ensemble tracking algorithm [7]. The learning 
stage was performed in every frame without skipping. For the 
learning stage, the object location in the first frame was 
provided by the user, while the locations in the other frames 
were provided by the estimation stage. 
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Fig. 4. (a) Generation of a likelihood image and (b) the
integration of likelihood images in the RAB estimation
stage. 
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Five test sequences were used for the experiments: “ice,” 
“browse,” “football,” “coastguard,” and “clip.” The resolutions 
of these sequences vary from 320 × 240 to 384 × 288 pixels. 
Every test sequence consists of 50 frames. We intentionally 
chose those frames to track objects that are always visible and 
have an approximately fixed size throughout the sequence. 
Each sequence was tested with two different numbers of 
features. Thus, there was a total of 10 tests. The same mean 
shift parameters were used for all the tests. 

Figures 5 to 9 show examples of the tracking results. The test 
sequences differ in object rigidity, the number of background 
pixels included in the object rectangle, the speed of object 
motion, and the camera movement. For the “ice,” “browse,” 
and “clip” sequences, the camera movements are unnoticeable 
and the objects move slowly. Object tracking in the “clip” 
sequence was generally easy because the object has a very 
different color from the background. The tests on the “ice” and 
“browse” sequences were relatively difficult, since the objects 
are not rigid and the objects and the backgrounds have similar 
colors. Furthermore, the object rectangle in the “browse” 
sequence contains a lot of background pixels because the 
object orientation changes from diagonal to vertical. Camera 
movements exist in the “football” and “coastguard” sequences. 
Tracking in the “football” sequence was the most difficult test 
because the tracked object in the “football” sequence exhibits 
very fast motions with motion blurs. Moreover, more than one 
third of the tracked object has similar colors to the background. 
In the “coastguard” sequence, the upper part of the object  

   

Fig. 5. Tracking results of the DAB algorithm from the “ice”
sequence at frames 2, 11, and 50.  

 

   

Fig. 6. Tracking results of the RAB algorithm from the “browse”
sequence at frames 1, 25, and 50.  

 

      

Fig. 7. Tracking results of the DAB algorithm from the “football”
sequence at frames 2, 10, 18, 26, 34, and 42.  

 

   

Fig. 8. Tracking results of the RAB algorithm from the 
“coastguard” sequence at frames 2, 25, and 50.  

 

   

Fig. 9. Tracking results of the DAB algorithm from the “clip”
sequence at frames 2, 25, and 50.  

 
rectangle contains many background pixels. 

The accuracy of an estimated object location is measured by 
the Euclidean distance between the estimation result and the  
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Table 1. Euclidean distance performance. L is Liang’s method [6], CL is Collins and Liu’s algorithm [5], ET is the ensemble tracking 
algorithm [7], and DAB and RAB are the proposed algorithms. Yellow boxes represent tracking failures, and bold numbers 
highlight the best results. 

Euclidean distance (pixels) 

Maximum  Minimum Mean  Variance Sequence 
Number 

of 
features L CL ET DAB RAB L CL ET DAB RAB L CL ET DAB RAB L CL ET DAB RAB

1 5.8 6.71 147.3 5.8 8.94 0 0 8 0 0 3 2.749 77.63 2.977 2.33 2.38 3.034 1705 2.492 4.231Ice 
(352×288) 3 5.83 6.71 146.5 5 8.06 0 0 8.062 0 0 3.12 2.836 73.52 2.503 1.72 2.791 3.539 1553 1.81 2.718

5 84.5 24 14.56 14.6 13 3 4.243 5 3.6 4.243 45.03 12.3 9.537 9.29 9.343 543 28.02 5.727 6.568 4.7Browse 
(384×288) 9 84.5 24.4 15.52 13.9 13 3 4.243 5 3.6 5 45.03 12.4 9.449 9.06 9.727 543 31.79 6.758 6.201 4.59

3 195 24 44.38 9.1 12.2 5.385 0 1 1 0 127.1 4.827 24.79 3.64 4.099 3284 27.55 155.3 4.41 7.953Football 
(352×288) 5 196 125 44.38 39.1 13 5.385 0 1 0 1 128.1 40.85 25.31 17.42 4.24 3305 1804 157.8 187.4 8.32

1 15.3 8.1 10.2 9.06 8.1 0 1.414 3.606 3 3.606 7.326 5.64 5.885 6.011 6.067 5.05 3.496 1.541 4.32 1.25Coastguard 
(352×288) 3 18.4 8.1 12.65 7.3 7.3 2 1.4 3.162 3 4 7.702 5.718 5.4 5.693 6.083 5.966 3.556 2.12 1.39 0.9

1 5 2.2 2.2 3.16 2.2 0 0 0 0 0 2.636 1.08 1.297 1.783 1.194 1.802 0.28 0.386 0.527 0.357Clip 
(320×240) 3 5 2.2 2.2 3.16 2.2 0 0 0 0 0 2.623 1 1.05 1.697 1.165 1.976 0.33 0.396 0.393 0.343

 

ground truth information provided by a human observer. Table 
1 compares the Euclidean distance performance of the tested 
algorithms. For each test, we measured the maximum, 
minimum, and mean distances, as well as the variance of 
distances over the sequence. In Table 1, bold numbers highlight 
the best results, and yellow boxes indicate tracking failures. 
Liang’s algorithm [6] yielded failures on the “browse” and 
“football” sequences; however, note that we did not use the 
scale adaptation scheme in [6] for a fair comparison with the 
other algorithms. Liang’s algorithm provides longer Euclidean 
distances than the other algorithms in general. Collins and Liu’s 
algorithm failed on the “football” sequence only, and yielded 
shorter mean distances than Liang’s algorithm. However, we 
see that the proposed DAB and RAB algorithms are generally 
better than the Collins and Liu’s algorithm in terms of the mean 
distance and the distance variance. In particular, the proposed 
DAB and RAB algorithms yield significantly lower distance 
variances than Collins and Liu’s algorithm. A lower variance 
indicates that the estimated trajectory matches the true 
trajectory more reliably. Based solely on the number of failures, 
we conclude that RAB is the most reliable algorithm, and that 
the reliability of DAB is comparable with that of Collins and 
Liu’s algorithm.  

Table 1 includes the performance of the ensemble tracking 
algorithm in [7] also for comparison. While Liang’s algorithm, 
Collins and Liu’s algorithm, and the proposed DAB and RAB 
schemes select a number of features adaptively during tracking, 
the ensemble tracking algorithm uses a fixed feature space and 
constructs the strong classifier adaptively by combining 
multiple weak classifiers. The ensemble tracking fails on the 

“ice” sequence. This is because it uses only the RGB values 
and the local histogram of oriented gradients as a feature vector. 
Since the object has RGB values and textures that are similar to 
those of the background, ensemble tracking cannot construct a 
good classifier on the feature space and therefore fails. 
Similarly, on the “football’’ sequence, the tracking window 
deviates from the helmet to the shoulder of the player, which 
has similar colors and textures. On the other hand, the proposed 
algorithm combines the RGB values to form a feature pool and 
selects features adaptively so that it can discriminate the object 
from the background successfully. Except for the “ice” and 
“football” sequences, the ensemble tracking algorithm and the 
proposed algorithm achieve comparable distance performance.  

If more features are used for the same sequence, the 
proposed algorithm achieves better tracking results in general, 
whereas the performance of Liang’s algorithm and Collins and 
Liu’s algorithm gets worse in many cases. Let T denote the 
number of features. In Liang’s algorithm and Collins and Liu’s 
algorithm, features are ranked according to their individual 
performance, and the best T features are selected without 
considering the inter-feature relationships. For example, let us 
consider the cases of T=1 and T=2. If the second best feature is 
not good enough, its addition may degrade the overall 
performance, and using one feature may be better than using 
two features. On the other hand, in the proposed algorithm, 
features are selected by the AdaBoost techniques iteratively. At 
each iteration, pixels which are already well classified with the 
existing features are assigned lower weights, and misclassified 
pixels are assigned higher weights in the selection of the next 
feature. In this way, the proposed algorithm selects the T  
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Fig. 10. Likelihood images for frame 3 of the “ice” sequence, 
obtained by (a) Collins and Liu’s algorithm [5], (b)
DAB, and (c) RAB. 

(a) (b) (c) 

 
 

   

Fig. 11. Likelihood images for frame 3 of the “football”
sequence, obtained by (a) Liang’s algorithm [6], (b)
DAB, and (c) RAB. 

(a) (b) (c) 

 
 

   

Fig. 12. Likelihood images for frame 24 of the “football”
sequence, obtained by (a) Collins and Liu’s algorithm 
[5], (b) DAB, and (c) RAB. 

(a) (b) (c) 

 
 
features that compensate the weaknesses of one another. By 
using more features, the RAB scheme reduces the mean and 
maximum distances in two sequences and reduces the 
variances in four sequences. Also, by using more features, the 
DAB scheme reduces the mean distances and the variances in 
four sequences while reducing the maximum distances in three 
sequences. 

Figures 10 to 12 show several likelihood images for visual 
comparison. In these images, red rectangles represent the 
ground truth object rectangles obtained by human observation. 
Figure 10(a) is the single best likelihood image, employed in 
Collins and Liu’s algorithm. We see that there are dark pixels 
inside the object rectangle especially in the upper left part, 
whereas the lower right region outside the rectangle is bright. 
In this condition, the mean-shift algorithm deviates from the 
correct position to the lower right. A similar condition is 
observed in the likelihood image of the DAB algorithm, as 
shown in Fig. 10(b), but the pixels inside the object rectangle 
are much brighter than those in Fig. 10(a). Thus, the deviation 
effect is alleviated. Figure 10(c) is a likelihood image of the  

Table 2. Processing times: L is Liang’s method [6], CL is Collins and 
Liu’s algorithm [5], and DAB and RAB are the proposed 
schemes. Yellow boxes represent tracking failures, and bold 
numbers highlight the best results. 

Processing time (s) 
Sequence 

Number of 
features L CL DAB RAB 

1 4.03 4.24 4.28 4.16 Ice 
(352×288) 3 4.75 4.83 10.16 9.31 

5 9.14 6.16 21.16 19.08Browse 
(384×288) 9 11.75 8.13 35.31 31.88

3 6.47 4.94 11.42 10.22Football 
(352×288) 5 7.13 5.56 16.28 14.86

1 11.13 5.08 5.88 5.49 Coastguard 
(352×288) 3 11.33 5.84 14.8 13.02

1 4.75 4.94 3.59 5.8 Clip 
(320×240) 3 5.25 5.42 8.56 15.02

 

 

Fig. 13. Processing times of Liang’s algorithm (L) [6], Collins 
and Liu’s algorithm (CL) [5], and the proposed DAB
and RAB schemes in terms of the number of features.

y = 0.6053x + 5.515

y = 0.3979x + 4.1613

y = 3.799x + 0.2275

y = 3.2486x + 1.8388

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9
Number of features 

Ti
m

e 
(s

)

L
CL
DAB
RAB

 
 
proposed RAB algorithm, where the brightness is generally 
lower. However, the brightness difference between the inside 
and the outside of the object rectangle is bigger; thus, a more 
precise tracking result can be achieved. Similar tendencies can 
be observed in the likelihood images for the “football” 
sequence in Figs. 11 and 12. 

Table 2 summarizes the processing times to obtain the results 
in Table 1. Also, Fig. 13 plots the processing times and their 
linear regression lines in terms of the number of features. The 
processing times of the ensemble tracking algorithm are not 
included in Table 2 and Fig. 13 because we have not optimized 
the code of the algorithm, which uses a lot of matrix 
multiplications in the learning of classifiers. Thus, the 
processing times of the ensemble tracking algorithm are longer 
than those of the proposed algorithms. However, after 
optimization, we believe that ensemble tracking will demand 
complexities comparable to those of the proposed schemes. We  
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Fig. 14. Distance performance of the proposed RAB algorithm
according to the learning period. The numbers of features
are set to 3, 9, 5, 3, and 3 for the “ice,” “browse,”
“football,” “coastguard,” and “clip” sequences,
respectively. 
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see that the complexities of the proposed DAB and RAB 
schemes increase more quickly than those of conventional 
algorithms when more features are used for tracking. This is 
largely because the proposed schemes choose T features using 
the AdaBoost learning methods, which are iterative and 
demand relatively high complexities. On the other hand, the 
conventional algorithms are simpler, since they rank features 
based on a feature selection criterion and choose the T best 
features simultaneously. However, note that by the careful 
selection and integration of features, the proposed schemes 
provide more reliable tracking results than the conventional 
algorithms. 

 The learning stage does not need to be carried out at every 
frame. For example, to reduce the processing complexity, we 
can perform the learning stage at every k-th frame only, where 
k denotes the learning period. Figure 14 shows how the 
distance performance varies according to the learning period. 
We see that the distance performance is not sensitive to the 
learning period, since the objects and the backgrounds change 
their appearance gradually in these sequences, and the learned 
information for a certain frame can be used to track objects in 
the subsequent frames. Moreover, on the “coastguard” 
sequence, the performance is slightly degraded when learning 
is too frequently performed. This is due to drift errors: as we 
learn features and models online, inaccuracies in a frame 
propagate to the subsequent frames. However, in general, the 
proposed algorithm achieves better performance, as we 
perform the learning stage more frequently. The only exception 
is the “football” sequence, which contains fast motions and 
experiences significant deformations of the object. When the 
learning period is larger than 10, the proposed algorithm fails to 
track the object in the “football” sequence correctly. The 
learning period should be selected carefully by considering the 

tradeoff relationship between the processing complexity and 
the tracking accuracy. 

The proposed algorithm has several limitations. Since we use 
only color information, the performance degrades when the 
object and the background have similar color distributions. The 
addition of textures and spatial information into the feature 
vector will improve tracking performance. Also, since an 
object is represented coarsely by an enclosing rectangle, 
background pixels are mislabeled as belonging to the object, 
contaminating the object model. However, we have found that 
this is not a problem, provided that there are similar pixels 
within the background window. Then, in the AdaBoost 
learning stage, these pixels are assigned lower weights, and the 
other pixels are treated as more important in the feature 
selection. But, when the background has irregular colors and 
textures, the rectangular window is not sufficient, and a tighter 
window is required. Another limitation is that the proposed 
algorithm does not consider the occlusion of objects. An 
occlusion handling procedure should be incorporated for the 
proposed algorithm to be used reliably in practical applications.  

VI. Conclusion 

In this work, we proposed two mean-shift object tracking 
algorithms: one based on DAB and the other based on RAB. 
DAB uses tuned feature values, whereas RAB estimates class 
probabilities, to select features and generate likelihood images. 
By employing the AdaBoost framework, the proposed 
algorithms can enhance the independence among selected 
features and compose high quality likelihood images. 
Experiment results demonstrated that the proposed algorithm 
can provide more accurate and reliable tracking results than 
Liang’s algorithm [6], and Collins and Liu’s algorithm [5]. 
Future research issues include the development and 
implementation of a fast learning algorithm to reduce the 
processing time for online tracking. 
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