• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.027 seconds

Frequency Analysis Method Based Fault Diagnosis of an Electrolytic Capacitor for Voltage Smoothing (주파수 분석기법을 이용한 전압 평활용 전해 커패시터의 고장진단)

  • Shon, Jin-Geun;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.207-213
    • /
    • 2009
  • Electrolytic capacitors have been widely used in power electronics system because of the features of large capacitance, small size, high-voltage, and low-cost. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. This paper proposed a novel fault diagnosis method of an electrolytic capacitor used for voltage smoothing in boost DC converter. The equivalent series resistance(ESR) of electrolytic capacitor estimated from FFT result of filtered waveform of capacitor voltage/current. Main advantage of the proposed method include circuit simplicity and easy implementation. Simulation and experimental results are shown to verify the performance of the proposed method.

Development of the Boost Type Auxiliary Coach Converter (객차용 BOOST형 보조전원장치에 관한 연구)

  • 김태완;박건태;정기찬;이성목;김두식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.727-732
    • /
    • 2000
  • This paper is on the development of a auxiliary power supply for the coach of Indian Railways. The auxiliary power supply system supplies the power for air-conditioners, air-compressors, lighting equipments, controllers, etc. It converts the input voltage, DC 110V which is supplied from battery, to AC 3${\Phi}$ 415V of 30kVA capacity. This is a low voltage-high current type converter system and largely consists of boost chopper and 3 phase inverter. Adopting a optimal control algorithm and simple power circuit, we realized the more reliable and competitive system for satisfaction of Indian Railway's strict requirement for vibration, temperature and dust. We completed the design, the manufacture and the field test of the system successfully and proved the system performance and reliability as a result of those tests.

  • PDF

Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles

  • You, Bong-Gi;Kim, Jong-Soo;Lee, Byoung-Kuk;Choi, Gwang-Bo;Yoo, Dong-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.527-534
    • /
    • 2011
  • In the present paper, the characteristics of Mega-Flux$^{(R)}$, JNEX-Core$^{(R)}$, amorphous and ferrite cores are compared to the inductor of buck-boost converters for Hybrid Electric Vehicles. Core losses are analyzed at the condition of 10 kHz sine wave excitations, and permeability fluctuations vs. temperature and magnetizing force will be analyzed and discussed. Under the specifications of the buck-boost converter for 20 kW THS-II, the power inductor will be designed with Mega-Flux$^{(R)}$ and JNEX-Core$^{(R)}$, and informative simulation results will be provided with respect to dc bias characteristics, core and copper losses.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

ZVZCS Single-Stage Power Factor Corrected Converter (영전압, 영전류 스위칭 1단 방식 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1348-1350
    • /
    • 2000
  • Zero-voltage and zero-current switched single-stage approach with high power factor is presented to reduce the switching losses and to achieve sinusoidal, unity power factor input currents. This single-stage approach, which combines a boost converter used as PFC with a half-bridge converter used as do to do conversion into one power stage, has a simple structure and low cost. At the same time, since the switches of the proposed converter are designed to be turned on at zero-voltage and off at zero-current, the switching losses could be reduced considerably. Detailed analysis and experimental results are presented on the proposed converter, which is operated at constant switching frequency and in discontinuous conduction mode.

  • PDF

A Charging Circuit for the Power Stotage of Wind Power Generation (풍력발전의 전력저장을 위한 충전회로)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.635-644
    • /
    • 2002
  • Many generating units can be in parallel connection to one battery and inverter. However, one of the biggest problems we encountered is that wind speed is fluctuated sharply in accordance with the unstable weather conditions. To solve this problem, we need energy storage equipment such as storage lead-acid battery. We design a system and analyze its modeling so that it supplies a stable power to the load through DC-AC inverter part. In this paper, we applied dual step-up/down buck-boost converter and dual high-frequency half-bridge converter to the proposed system. These converters are used to store energy in the battery regardless of the change of the wind speed. The operation process of two proposed types of converters for high-power battery charging is discussed along with simulation and experimental result. We design a charging circuit which is applicable in the actual wind power generation system for 30kw and confirm the circuit's validity.

High Power-Factor Single-Stage Half-Bridge High Frequency Resonant Inver (고역률을 가지는 Single-Stage Half-Bridge 고주파 공진 인버터)

  • Won, Jae-Sun;Kim, Dong-Hee;Seo, Cheol-Sik;Cho, Gyu-Pan;Oh, Seung-Hoon;Jung, Do-Young;Bae, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1196-1198
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

A Study on the Performance-Improvement of TIG Welder with IGBT Inverter System. (IGBT 인버터제어 TIG용접기 성능개선에 관한 연구)

  • Lee, J.H.;Kim, J.M.;Kim, Y.C.;Won, C.Y.;Kim, G.S.;Kim, Y.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2155-2158
    • /
    • 1997
  • This paper describes the performance improvement of dc TIG (Tungsten Inert Gas) welder. The TIG welder consists of single phase full bridge IGBT inverter which incorporates the high frequency transformer, the boost converter for improving the input power factor, and the arc start system. The arc will be generated without fail even when the extension cable between the torch and the power source is 100m long. In addition, the arc start system with a short dc output voltage will generate less EMI noise than the traditional arc start system with a high frequency output voltage. To demonstrate the practical significance of the proposed methods, some simulation studies are presented.

  • PDF