• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.029 seconds

Reduction of Output Voltage Ripples in Single-Phase PWM Rectifier with Active Power Decoupling Circuit

  • Nguyen, Hoang-Vu;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.419-420
    • /
    • 2015
  • In this paper, a low-cost single-phase PWM rectifier with small DC-link capacitors is proposed, where a buck-boost converter with a low power rating is added at the DC link. By controlling the auxiliary circuit so as to absorb the voltage ripple in the DC link, the second-order voltage ripple in DC-link capacitor can be reduced significantly. Therefore, a small film capacitor can be utilized to replace the bulky electrolytic capacitors. The simulation results are shown to verify the validity of the proposed method.

  • PDF

Bi-Directional Buck-Boost Forward Converter for Photovolatic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.50-51
    • /
    • 2015
  • 본 논문에서는 다수의 PV-부스트 컨버터를 입력으로 하는 계통연계형 풀브리지 인버터의 DC링크 커패시터간 전압 균등화 방법을 제안한다. 다수의 PV가 입력으로 연결된 인버터의 경우 각 PV의 부분 그늘짐 현상과 같은 조건에 따라서 최대 전력점이 달라질 수 있다. 각각의 PV와 연결된 부스트 컨버터의 출력 은 인버터의 DC링크 커패시터로서 각각이 직렬로 연결되는데 각 전압 분배는 PV의 입력에 따라 결정되게 된다. PV의 발전조건이 바뀌어 부스트 출력전압 편차가 극심해져서 더 이상 부스트 컨버터로서의 역할을 할 수 없는 조건이 갖춰진다면 PV에서의 안정적인 발전을 기대할 수 없을 것이다. 또한 DC링크 커패시터 간 전압의 불균형은 시스템을 설계함에 있어서 소자의 더 넓은 범위에서의 동작조건을 만족시켜야 하기 때문에 효율 면에서 나쁜 영향을 미치게 된다. 시뮬레이션을 통해서 DC링크 커패시터 간 전압 균등화 방법을 검증하였다.

  • PDF

Load Characteristic of Three-phase AC/DC Boost Converter Using a $PRS^2$. ($PRS^2$를 사용한 3상 AC/DC 컨버터의 부하특성)

  • Kang, Wook-Jung;Lee, Hyun-Woo;Suh, Ki-Young;Beak, Soo-Hyun;Han, Kyung-Hee;Chun, Jung-Ham
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.438-440
    • /
    • 1997
  • This paper proposed a partial resonant switching three-phase high power factor converter using a $PRS^2$(Partial Resonant Soft Switch). The proposed converter has a merit of simple controlled circuit because the input current control DCM(Discontinuous Conduction Mode). And it is improve to input power factor that the snubber capacitor's energy regenerate to the AC source side. This topology is reduced a current/voltage stresses of resonant devices in addition to a partial resonant strategy. The result of simulations with the proposed topology included in this paper.

  • PDF

A New Single-Stage PFC AC/DC Converter

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.238-240
    • /
    • 2007
  • A new ZVZCS Single-Stage Power-Factor-Correction(PFC) AC/DC converter with boost PFC cell is integrated with voltage doubler rectified asymmetrical half-bridge(VDRAHB) is proposed in this paper. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of link capacitor. An 85W prototype was implemented to show that it meets the harmonic requirements and standards satisfactorily with nearly unity power factor and high efficiency over universal input.

  • PDF

Power factor correction of the three phase boost converter using DSP control (DSP 제어에 의한 3상 Boost 컨버터의 역률개선)

  • Baek, Jong-Hyeon;Hong, Seong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.958-961
    • /
    • 1998
  • In this paper, a three phase boost converter that operates with unity power factor and sinusodial input currents is presented. The current control of the converter is based on the space vector strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector strategy for current control was materialized as a digital control method by using DSP. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

Practical Implementation of an Interleaved Boost Converter for Electric Vehicle Applications

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1035-1046
    • /
    • 2015
  • This study presents a practical implementation of a multi-mode two-phase interleaved boost converter for fuel cell electric vehicle application. The main operating modes, which include two continuous conducting modes and four discontinuous conducting modes, are discussed. The boundaries and transitions among these modes are analyzed with consideration of the inductor parasitic resistance. The safe operational area is analyzed through a comparison of the different operating modes. The output voltage and power characteristics with open-loop or closed-loop operation are also discussed. Key performance parameters, including the DC voltage gain, input ripple current, output ripple voltage, and switch stresses, are presented and supported by simulation and experimental results.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

Development of the Starting Algorithm and Starter for Turbo Generator (터보 제너레이터의 시동 알고리즘 및 시동기 개발)

  • 노민식;박승엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The starter of the turbo generator is composed of a high speed generator(HSG), an inverter and a boost converter instead of a gearbox, a DC motor and a low-voltage battery in the starter of the turbo shaft generation system. Because turbo generator is needed a high speed motoring at start-up, high speed generator has a low leakage inductance and inverter need a high DC link voltage. In this study, for developing the stater of a turbo generator, a boost converter with a high capacity was developed to convert high voltage from a low battery voltage. And for controlling a high frequency current to be injected to a motor winding with a low leakage inductance, the inverter with a high precision and a high speed operation was designed and for a stable ignition, the starting algorithm of a turbo generator was proposed. Turbo generator was started by the starter developed to verify the performances.

A Study on Loss Analysis of ZVT-PWM Boost Converter using Quasi-Resonant Technique (유사공진 기술을 이용한 ZVT-PWM Boost 컨버터의 손실분석에 관한 연구)

  • 김정래;박경수;성원기;김춘삼
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Recently, DC-DC converters significantly increase the total losses as rising switching frequency. Trnditional soft switching technique for reducing switching losses even increase voltage/Clment stress of switch In this paper, Resonant circuit for soft switching is connected in parallel with power stage and only operates just before tum-on of the main sWItch. Therefore, ills doesn't affect the total circuit QI'||'&'||'pound;ration. The object of tIns paper is to make the linearized equivalent loss mxleIs. and to analyze the total losses by experiment. ZVT-PWlvI converter designed with 170-260[V] input, 400[V] 5[A] output, and 100[kHz] switching frequency is tested respectively with 500[W], 1[kW], 1.5[kW], and 2[kW] loads. The total losses in input 220[V], 2[kW] load are analyzed by usirm the linearized equivalent loss models.

  • PDF