• Title/Summary/Keyword: Boost 컨버터

Search Result 743, Processing Time 0.031 seconds

Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter (멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Fault tolerant control scheme for a converter in a photovoltaic system (태양광 발전시스템의 컨버터 고장에 따른 보상운전기법)

  • Park, Tae-Sik;Hur, Yong-Ho;Lee, Kwang-Woon;Moon, Chae-Joo;Kwak, No-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.31-40
    • /
    • 2016
  • The demands for photovoltaic systems on a large scale have grown dramatically and require new technologies to get the high efficiency and reliable operations of power conversion systems. These needs can be realized by the cost-effective and high performance digital revolutions and faster semiconductor switching devices. However, the new power systems have been more sophisticated and their reliability becomes critical issues. In this paper, a new fault-tolerance power conversion scheme for the photovoltaic systems is proposed. The proposed fault-tolerant scheme is able to supply energy from solar panels to loads intermittently in spite of a front boost converter open failure, and its voltage and current controllers are designed to improve the transient performance by using an average model design scheme. The proposed approach is verified both by simulations. The results will enable more timely and wide usage of alternative/renewable energy systems resulting in increased energy security.

High Power Factor Three-phase AC-DC Flyback Converter Module Using Zero Voltage Switching (영전압 스위칭을 이용한 고역률 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Song, J.H.;Choy, I.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2701-2703
    • /
    • 1999
  • A new mode of parallel operation of a modular 3-phase AC-DC Flyback converter for high power factor correction along with tight regulation is presented in this thesis. The converter offers input/output transformer isolation for safety, a unity input power factor for minimum reactive power, high efficiency and high power density for minimum weight and volume. Compared with previously developed 3-phase two-stage power converter, the advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper, a detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems (태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Yoo, Su-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

A New Solar Energy Conversion System Implemented Using Single Phase Inverter (단상 인버터를 이용한 새로운 태양광 에너지 변환 시스템 구현)

  • Kim, Sil-Keun;Hong, Soon-Ill
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.74-80
    • /
    • 2006
  • This paper describes a solar energy conversion strategy is applied to grid-connected single phase inverter by the maximum power point of conversion strategy. The maximum power point of tracking is controlled output power of PV(photovoltaic)modules, based on generated circuit control MOSFET switch of two boost converter for a connected single phase inverter with four IGBT's switch in full bridge. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of PV module. Furthermore, the generation control circuit attenuates low-frequency ripple voltage. which is caused by the full-bridge inverter, across the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

PWM Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Location (듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 캐리어 생성 방법 및 영벡터 위치에 따른 전류 리플 영향성 분석)

  • Shim, Jae-Hoon;Choi, Hyeon-Gyu;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.13-15
    • /
    • 2019
  • 듀얼 인버터를 가진 개방 권선형 영구자석 동기 전동기는 같은 DC Link 전압으로 모터에 더 큰 전압을 사용할 수 있게 할 수 있다. 이 때문에 DC Link와 인버터 사이의 DC/DC Boost 컨버터의 필요성을 없애줄 뿐 아니라 배터리의 전압을 낮출 수 있어 안전상의 이점 및 BMS의 요구 조건을 낮추므로 경제적 이점을 가질 수 있다. 이 시스템은 경제적 이점 외에도 모터에 고전압을 인가함으로써 기존에 비해 고속 운전 영역 확장 또는 운전 영역을 기존과 동일하게 유지한다면 인버터의 손실 감소라는 이점 또한 얻을 수 있다. 그러나 1차단 인버터와 2차단 인버터의 합성전압 차이로 인해 생기는 Zero Sequence Voltage (ZSV)로 인해 시스템의 손실을 증대시키는 Zero Sequence Current (ZSC)가 흐를 수 있다. 본 연구에서는 이를 억제하기 위한 스위칭 패턴 형성을 위한 PWM 캐리어 생성 방법에 대해 제시하고, 이 방법을 적용하여 스위칭 순서 상 센터 영벡터의 유/무에 따른 제어 영향성 분석을 추가로 진행하여 전류 리플을 줄일 수 있는 스위칭 패턴 생성 방법을 제시한다.

  • PDF

Comparison of Battery Charging Strategies for PHEVs using Propulsion Motor Inductance and Multi-Function Inverter (인덕터 및 모터 인덕턴스를 이용한 PHEV 배터리 충전 기법 비교 분석)

  • Woo, Dong-Gyun;Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Byoung-Kuk;Kang, Gu-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.326-333
    • /
    • 2011
  • This paper studies battery charging methods using existing motor inductance and 3-phase inverters without an additional charger to charge the battery of Plug-in Hybrid Electric Vehicles (PHEVs). As inverter switch control and motor coil used as the energy storage device for boosting make the system the boost converter, the additional charger is eliminated and volume, weight, and cost for the charger are reduced. Various charging methods according to topologies of the system and configurations of the controller are analyzed and verified by PSIM simulation.

A 6.6kW Low Cost Interleaved Bridgeless PFC Converter for Electric Vehicle Charger Application (전기자동차 응용을 위한 6.6KW 저가형 브리지 없는 인터리빙 방식의 역률보상 컨버터)

  • Do, An-Ban-Tu-An;Choe, U-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.24-25
    • /
    • 2017
  • In this paper, a low cost bridgeless interleaved power factor correction topology for electric vehicle charger application is proposed. With the proposed topology the number of switches, inductors, current sensors and associated circuits can be reduced, thereby reducing the cost of the system as compared to the conventional bridgeless PFC circuit. The reduced input current ripple by the proposed interleaved topology makes it suitable for high power applications such as electric vehicle chargers since it can reduce the size of the inductor core and the Electro Magnetic Interference (EMI) problem. In the proposed topology only one current sensor is required. All the boost inductor currents can be reconstructed by sampling the output current and used to control the input current. Therefore the typical problem caused by the unequal current gain of each current sensor inherently does not exist in the proposed topology. In addition the current sharing between converters can be achieved more accurately and the high frequency distortion is decreased. The performance of the proposed converter is verified by the experimental results with a prototype of 6.6kW bridgeless interleaved PFC circuit.

  • PDF

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF