• Title/Summary/Keyword: Booming noise

Search Result 74, Processing Time 0.024 seconds

Integrated Test and Evaluation for Improvement of Vehicle Road Noise (승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구)

  • 고강호;허승진;국형석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

What are measures to reduce interior noise for KTX in tunnel with concrete track? (콘크리트 궤도 터널 주행 시 KTX차량의 실내소음 저감방안은 무엇인가?)

  • Kim J.C.;Koh H.I.;Lee C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.29-30
    • /
    • 2006
  • The interior noise of KTX in tunnel has become an issue since the commercial operating in April 2004. The analysis of the interior noise of KTX in tunnel with concrete track shows sharply increased noise level in the range of 80Hz that is the natural frequency of the KTX carbody. We know that the booming noise inside KTX in tunnel with concrete track is generated by noise outside gangway and rolling noise at the carbody natural frequency. In this Study noise reduction methods are discussed on the basis of the comparison of the KTX and KHST noise characteristics. Alternatively, the effect of the modified mud-flap on the interior noise is introduced.

  • PDF

A Study on the Active Noise Cancellation System in a Vehicle Cabin Using the Weighting Factors of Control Error Path (제어오차계의 가중치를 이용한 차실내 능동소음제어 시스템 연구)

  • 홍석윤;허현무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • The active noise cancellation system showing the effective convergence and stability has been studied by simplifying the controller structures using the weighting factors of control error path to the multi-channel filtered-x LMS algorithm which needs a lot of calculations and the performance has been verified experimentally. Besides, to implement the system performance in a vehicle cabin, experimental work for selecting the suitable numbers and positions of the microphones and speakers was accomplished. Effectively combining a TMS 320C 31 main processor conducting real number calculations and having various functions with other components, the purpose-built system board for active noise cancellation has been designed and with this board, car active noise cancellation system showing maximum stable 10dB noise reduction has been obtained at the car idling conditions above 3000rpm range.

  • PDF

Development of a Low Noise Intake System Using Non-Helmholtz Type Resonator (다양한 공명기를 적용한 자동차 저소음 흡기시스템 개발)

  • Lee, Chang-Myung;Han, Sung-Su;Jung, Byung-In;Lim, Ji-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1643-1647
    • /
    • 2000
  • The intake noise of an automobile induced by firing of an engine accompanies acoustic resonances of ducts of an intake system. Conventionally, the adoption of the Helmholtz type resonator was one of possible ways to eliminate the booming noise due to acoustic resonances of air ducts. Although the Helmholtz type resonator is convenient to attenuate the intake noise of an automobile, the usage of the Helmholtz type resonator requires cost increase or big engine room space. Therefore, reduction of the number of the resonators or the volume of the resonators is essential to increase the value of an automobile. To meet these requirements, other types of resonator are suggested instead of the Helmholtz type resonator. The effectiveness of the suggested resonators is compared considering noise reduction ability, effect to the engine performance and size of each resonator.

  • PDF

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

A Study on Shapes of CTBA for Road Noise Reduction (CTBA 형상에 따른 로드노이즈 상관성 평가)

  • Lee, Moon Seok;Lim, Ji Min;Lee, Chan;Baik, Hong Sun;Hwang, Chulha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.600-604
    • /
    • 2013
  • A CTBA(Coupled Torsion Beam Axle) is a general type for rear suspension of small/compact sedans. It connects left and right knuckles using torsion beam axle and trails rear wheels. Therefore, a CTBA performs a main role of ride & handing. But, a CTBA suspension has main bending mode around 120Hz and causes road booming noise in the interior of a car. Therefore, the mode control of a CTBA is very important for reducing road noise. In this paper, we optimized the shape of a CTBA to reduce road noise considering R&H performance, simultaneously. The vibration mechanism of CTBA was investigated using ODS(Operational Deflection Shape) and mode shape.

  • PDF

A Study on the Reduction of Booming Noise of an Automobile (승용차의 부밍 소음 저감에 관한 연구)

  • 이상현;강상욱;최형길;이장무;성명호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.867-871
    • /
    • 1996
  • Recently many studies have been carried out to predict the characteristics of vehicle noise and to reduce the noise for enhancing the ride quality. In this study, the structural-acoustic coupling theory and the acoustic finite element theory were reviewed, and the structural acoustic coupling analysis was applied to an automobile. Because of nonuniformed lateral shape of a compartment cavity, the acoustic modes were calculated with 3-D finite element modeling. The structural modes were measured with the modal testing. Using the structural-acoustic cooling analysis, the modes which strongly coupled to the interior noise were identified and the boundary regions which could reduce noise level efficiently by structural modification were predicted.

  • PDF

Reduction of Structure-borne Idle Noise with the Insertion of a Composite Body inside Vehicle Body Skeleton (차체골격내 복합체 삽입을 이용한 구조기인 아이들 소음저감)

  • Kim, Hyo-Sig;Kim, Joong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • As a matter of fact, it has been not allowed to modify the shape of a vehicle body skeleton since the technical definition for the structure was fixed and the corresponding molds were developed. By the way, if it is available to apply an alternative to reinforce the skeleton without changing its mold, it must be much flexible to improve the performance qualities relevant to not only NVH(noise, vibration and harshness) but also crash and durability. Recently, a solution of so-called composite body becomes available for the need. We present a design method to insert the composite body inside a vehicle body skeleton in order to improve a structure-borne noise at the idle condition. The algorithms, topology optimization and design sensitivity analysis, are applied to mainly search the sensitive structural sections in the body skeleton and to extract the target stiffness of the sections. Inserting the composite bodies into the sensitive portions, it is predicted to achieve the countermeasures which can compromize the design availability in terms of the idle noise and weight. According to the validation result with test vehicles, the concerned noise transfer function is reduced and the idle booming noise is resultantly improved.

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

A Study on the Vibration Characteristics of Powertrain in Motion (차량 주행시 동력전달계의 진동 특성 연구)

  • 최은오;홍동표;안병민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.27-33
    • /
    • 1998
  • The powertrain is a system of exciters which are connected by vibration transmitters and noise radiators. The powertrain has infinite natural frequencies. If the engine explosion, excites a certain natural frequency, then the powertrain system seriously vibrates. The torsional vibration arises from here. Torsional vibration like this can cause various noises as rattle and booming. In this study, the simulation models of multiple degrees of freedom were developed to reduce the torsional vibration of the powertrain. These models are combined mass moment of inertias with torsional springs. The free and forced vibration analyses were carried out by these models; and the validity of the simulation models were checked by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF