• Title/Summary/Keyword: Booming noise

Search Result 74, Processing Time 0.018 seconds

Interior Noise Reduction Using Sensitivity Analysis and Structural Dynamic Modification (민감도 해석 및 구조 변경법을 이용한 차실 소음 저감)

  • 황우석
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1145-1151
    • /
    • 1999
  • Sensitivity analysis and structural modification technique are used to reduce the interior noise of a passenger car. The sensitivity analysis for the noise level at the rear seat shows that the stiffness change at the front lower member and the rear roof rail are sensitive. Using the structural modification method, we verified that the reinforcements at those members decrease the noise transfer function from the body to the rear seat. The combined application of the sensitivity analysis and structural modification method can decrease the noise level effectively.

  • PDF

Characteristics of Wind Noise from Overhead Transmission Facilities (가공 송전설비의 소음 특성)

  • 추장희;김상범;신구용;이성두;이동일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.465-472
    • /
    • 2001
  • This paper describes the characteristics of wind induced noise from high-voltage overhead transmission facilities which include transmission lines. insulator strings. and aviation beacon spheres installed on the overhead ground wires. High-voltage overhead transmission lines generate an audible wind noise due to the alternate shedding of wind-induced vortices. The frequency spectrum from the insulator strings reveals its resonance peak. This resonance sound mechanism has been supposed the self-excitation phenomenon of the resonance and the velocity fluctuation. The booming noises from the aviation beacon spheres are detected and analysed.

  • PDF

Nose Shape Optimization of the High-speed Train to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • 권혁빈;이관중;이동호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.506-513
    • /
    • 2000
  • The tunnel booming noise generated by a train moving into a tunnel has been one of the most serious constraints in the development of the high-speed trains. It is well known that the nose shape of the train has the significant influence on the intensity of the booming noise. In this study, the nose shape has been optimized by using the response surface methodology and the axi-symmetric compressible Euler equations. The parametric studies are also performed with respect to the slenderness ratio, the blockage ratio and the train speed to investigate their sensitivities to the optimization results. The results show that it is possible to define more general design space by introducing the Hicks-Henne shape functions, resulting in the more effective nose shape than that of Maeda. The mechanism and the aspects of the train-tunnel interaction were also investigated from the results of the parametric study.

  • PDF

A study on tunnel entry design considering the booming noise resulting from micro-pressure wave (미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구)

  • 목재균;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

The Implementation of the Real-Time Active Noise Control System for Attenuating the Engine Noise in a Car (자동차 실내에서의 엔진 소음 감쇠를 위한 실시간 능동 소음 제어 시스템의 구현)

  • Kwon, Oh-Sang;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.11-20
    • /
    • 1997
  • The passive noise control techniques used until now cancel the noise in terms of the characteristics of materials, which increase the mass and the dimension and have a limit that is effective only to attenuate the high frequency components of the noise. But the active noise control techniques developed in recent years have merits that they decrease the mass and the dimension and are effective to attenuating the low frequency noises. In this paper, the real-time active noise control system attenuating the engine booming noise in a car using the digital signal processing(DSP) techniques in terms of the principle of active noise control. The multiple-error filtered-x LMS(Least-Mean Square) algorithm is used as the adaptive algorithm for active noise control and is implemented using the DSP processor Motorola DSP56001 as a controller. According to the result that the experiments are performed for the engine as the RPM changes in a car, the noise attenuating performances are achieved in an overall car interior and is verified to be 20 dB higher for pure-tone and globally, 15 dB.

  • PDF

A Study on the Noise Reduction of Cabin in the Excavator (굴삭기 운전실 소음저감에 관한 연구)

  • 김추호;최두원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.89-93
    • /
    • 1995
  • 일반적으로 건설장비의 운전자 소음은 자동차와는 달리 주행 시 소음에 관한 것은 크게 문제되지 않는다. 다만 모든 작동부들이 유압력에 의해 구동되므로 유압 이음이 새롭게 대두되며, 엔진 사용조건 또한 자동차와는 상이하다. 그러나, 운전자가 느끼는 관점에서 운전실내에서 안락함의 요구는 점차로 강해지고 있을 뿐만 아니라 소비자들의 직접적인 구매 의욕과 직결된다. 이에 본 연구에서는 굴삭기 운전실에서 문제시 되는 부밍(Booming)소음에 대해 고찰하고, 구조 기인 소음(structure-borne noise)에 초점을 둔 실험적 기법의 도입으로 주 소음원을 규명하고 주요 인자들에 대한 기여도 분석을 통해 운전실 소음 저감을 구현하였다.

  • PDF

A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave (미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구)

  • 목재균;최강윤;유재석
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

Refinement of Car Interior Noise Using the Vectorial Analysis Technique (벡터 해석법에 의한 차실 소음의 저감)

  • 이정권;민형선;백홍전
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.141-147
    • /
    • 1991
  • A vectorial approach is used to reduce the objectionable booming noise in the vehicle interior cabin. After identifying the structural transmisson paths, the structural-acoustic transfer functions are evaluated at those mounting positions. Using the measured deformations in the mounting elements and multiplying them with each dynamic stiffness value one can easily get the dynamic input forces acting on the mounting elements. By summing all the contributors vectorially, most important contributor or transmission path can be determined. According to the experimental information, devised countermeasures are applied to a development car and good results are obtained.

  • PDF

Analysis of Interior Noise for KTX in Tunnel with Concrete Track (콘크리트 궤도 터널 내 KTX 차량의 실내소음 특성 분석)

  • Kim, Jae-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.25-28
    • /
    • 2005
  • The interior noise of KTX in tunnel is becoming the problem since the commercial operating in April 2004. The major sources of interior noise for High speed train ate known as the aerodynamic noise and rolling noise generally. We measure the noise and vibration inside KTX in tunnel in order to find the cause of the interior noise of KTX. The analysis results show that the interior noise of KTX in tunnel with concrete track is increased sharply by a low frequency below 80Hz that is the natural frequency of the KTX carbody. We know that the booming noise inside KTX in tunnel with concrete track is generated by aerodynamic noise outside ganqway and rolling noise at the carbody natural frequency.

  • PDF