• Title/Summary/Keyword: Boolean Research

Search Result 68, Processing Time 0.029 seconds

Error Detection using Advanced Parity Bit (패리티 비트를 확장한 오류 검사에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok;Kim, Yong-Hyun;Kim, Shin-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1965-1966
    • /
    • 2008
  • The manipulation of Boolean functions is a fundamental part of computer science, and many problems in the design and testing of digital systems can be expressed as a sequence of operations. It is mainly a paper of our research on the techniques of Boolean function manipulation using Binary Decision Diagram(BDDs) and their applications for VLSI CAD System. In many practical applications related to digital system design, it is a basic technique to use ternary-valued functions. In this paper, we discuss the methods for representing logical values.

  • PDF

Derivations of Single Hypothetical Don't-Care Minterms Using the Quasi Quine-McCluskey Method

  • Kim, Eungi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.25-35
    • /
    • 2013
  • Automatically deriving only individual don't-care minterms that can effectively reduce a Boolean logic expressions are being investigated. Don't-care conditions play an important role in optimizing logic design. The type of unknown don't-care minterms that can always reduce the number of product terms in Boolean expression are referred as single hypothetical don't-care (S-HDC) minterms. This paper describes the Quasi Quine-McCluskey method that systematically derives S-HDC minterms. For the most part, this method is similar to the original Quine-McCluskey method in deriving the prime implicants. However, the Quasi Quine-McCluskey method further derives S-HDC minterms by applying so-called a combinatorial comparison operation. Upon completion of the procedure, the designer can review generated S-HDC minterms to test its appropriateness for a particular application.

Maximal Algebraic Degree of the Inverse of Linearized Polynomial (선형 다항식의 역원의 maximal 대수적 차수)

  • Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.105-110
    • /
    • 2005
  • The linearized polynomial fan be regarded as a generalization of the identity function so that the inverse of the linearized polynomial is a generalization of e inverse function. Since the inverse function has so many good cryptographic properties, the inverse of the linearized polynomial is also a candidate of good Boolean functions. In particular, a construction method of vector resilient functions with high algebraic degree was proposed at Crypto 2001. But the analysis about the algebraic degree of the inverse of the linearized Polynomial. Hence we correct the inexact result and give the exact maximal algebraic degree.

The Site Analysis for Crop Cultivation Using GIS-Based AHP Method (GIS 기반 AHP 기법을 이용한 작물재배 적지분석)

  • Kim, Tae Jun;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.695-702
    • /
    • 2006
  • In GIS-based Spatial Decision-making Support System (SDSS), the Boolean logic by conventional simple overlay method contains two problems. One is losing lots of information in analysis process, the other is unable to reflect of weighting values between evaluated items. Therefore, evaluation system as Analytic Hierarchy Process (AHP) needs to improve these problems effectively. The purpose of this study is to provide the benefit of AHP method and GIS spatial analysis in site analysis for crop cultivation. First, the weighting value of AHP for topography, distribution grade of water, property of soil and slope items are evaluated throughout survey to experts of soil, crop and agricultural management fields. On the basis of these weighting value of AHP by items, site suitability analysis for black raspberry cultivation is performed. To estimate the benefit of AHP method, the current cultivating map of black raspberry is constructed in Ssangchi-myeon district. In comparison with site analysis of Boolean logic, site analysis of AHP method shows more realistic.

IR and SAR Sensor Fusion based Target Detection using BMVT-M (BMVT-M을 이용한 IR 및 SAR 융합기반 지상표적 탐지)

  • Lim, Yunji;Kim, Taehun;Kim, Sungho;Song, WooJin;Kim, Kyung-Tae;Kim, Sohyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1017-1026
    • /
    • 2015
  • Infrared (IR) target detection is one of the key technologies in Automatic Target Detection/Recognition (ATD/R) for military applications. However, IR sensors have limitations due to the weather sensitivity and atmospheric effects. In recent years, sensor information fusion study is an active research topic to overcome these limitations. SAR sensor is adopted to sensor fusion, because SAR is robust to various weather conditions. In this paper, a Boolean Map Visual Theory-Morphology (BMVT-M) method is proposed to detect targets in SAR and IR images. Moreover, we suggest the IR and SAR image registration and decision level fusion algorithm. The experimental results using OKTAL-SE synthetic images validate the feasibility of sensor fusion-based target detection.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

A Basic Study on the Design of the GPS Receiver (GPS의 수신기 개발을 위한 기초연구)

  • 정세모;정규형
    • Journal of the Korean Institute of Navigation
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1982
  • In this paper, author studied on the elementary data required for the design of the receiver of Pseudo Noise (PN) phase modulation communication adopted in Global Positioning System(GPS). By computer simulation technique, the phase modulator, filters, and PN generator are designed, and also required bandwidth of R-F amplifier for carrier frequency in phase modulation system is investigated. It is verified that the optimum bandwidth is about 3 times of the PN frequency and almost independent of the carrier frequency. And the low pass filter required for demodulation of slow Boolean data is also found to be about 60 times of the data signal frequency.

  • PDF

Correlation Immune Functions with Controllable Nonlinearity

  • Chee, Seong-Taek;Lee, Sang-Jin;Kim, Kwang-Jo;Kim, Dae-Ho
    • ETRI Journal
    • /
    • v.19 no.4
    • /
    • pp.389-401
    • /
    • 1997
  • In this paper, we consider the relationship between nonlinearity and correlation immunity of Boolean functions. In particular, we discuss the nonlinearity of correlation immune functions suggested by P. Camion et al. For the analysis of such functions, we present a simple method of generating the same set of functions, which makes it possible to construct correlation immune functions with controllable correlation immunity and nonlinearity. Also, we find a bound for the correlation immunity of functions having maximal nonlinearity.

  • PDF

Hybridization in Digital Geometry (디지털 조형의 혼성적 특성연구)

  • Kim, Ran-Hee;Ahn, Seongmo
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.129-139
    • /
    • 2014
  • The objective of this research is to suggest new geometric possibilities in digital architecture by investigating the characteristics of hybridization in digital geometry. The research begins with theoretical background research such as defining hybridization, investigating hybrid thinking, and studying the theory of digital geometry, along with the four conceptual characteristics of hybridization that could be drawn, such as temporality, liquidity, complexity, and connectivity. Based on these characteristics, the generative method of hybrid digital geometric languages such as Blob, Particle, Morph, Loft, and Boolean was analyzed with case research in contemporary digital architecture. As a result, diverse hybrid geometric keywords were extracted; these keywords suggest potential meanings of hybridization such as accidentality, mobility, diversity, and identity. Different elements represent the "mobility" in time by the force and wave, and they are "accidentally" combined in gradual change. The united species in "diverse" characters are seamlessly connected and emerge as a new "identity." The research maximizes the generative possibilities in digital geometry and provides a theoretical basis to apply the digital hybrid methods to architectural design by suggesting the potential meanings and possibilities in hybridization.

The Site Analysis for Land Use Planing using Fuzzy Sets Theory and Analytic Hierarchy Process(AHP) - The Case Study of Technopark Planning in Pohang - (토지이용계획의 용도별 적지분석에 있어서 퍼지이론 및 계층분석과정(AHP)의 활용 - 포항시 첨단연구단지의 사례분석을 중심으로-)

  • Koo, Jahoon;Sung, Keum-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.34-46
    • /
    • 2001
  • The Boolean logic analysis method using GIS as a spatial decision support system(SDSS) contains two problems. One is losing a lots of informations in analysis process, the other is unable to reflect of different weights between analysis items. The purpose of this study is to provide a new decision-making model for site analysis, that provides a rational and systemic way using fuzzy sets theory and analytic hierarchy process(AHP) theory. According to this study of technopark in Pohang, Boolean logic method did not reflect the influence of the differently weighted items and selected only 8.0% to 16.1% of the area for suitable sites for residence, commercial/research, park/green uses. The fuzzy sets theory and AHP theory method were able to reflect the influence of differently weighted items and selected 32.9% to 37.4% of the area for the best sites, and also provided more other kinds of informations. The results of this study show that GIS system using fuzzy sets theory and AHP proess method provides a more flexible and objective solutions for site analysis.

  • PDF