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ABSTRACT

In this paper, we consider the relationship
between nonlinearity and correlation immu-
nity of Boolean functions. In particular, we
discuss the nonlinearity of correlation immune
functions suggested by P. Camion et al. For
the analysis of such functions, we present a
simple method of generating the same set
of functions, which makes it possible to con-
struct correlation immune functions with con-
trollable correlation immunity and nonlinear-
ity. Also, we find a bound for the correlation
immunity of functions having maximal nonlin-

earity.
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I. INTRODUCTION

Cryptographic Boolean functions play
an important role in the design of nonlin-
ear filter functions or nonlinear combiners
in stream cipher as well as primitive logics
in block ciphers.

In particular, the function whose out-
put leaks no information about its input
values is of great importance. Such func-
tions called correlation immune functions
were firstly introduced by T. Siegenthaler
[1]. Since then the topic has been an ac-
tive research area [2]-[6] and many stream
ciphers have employed the correlation im-
mune functions. P. Camion et al. [2] pre-
sented a method for constructing balanced
correlation immune functions. J. Seberry et
al. [4] discussed the nonlinearity and prop-
agation characteristics of such functions.

The objective of this paper is to discuss
the relationship between correlation immu-
nity and nonlinearity of Boolean functions.
In particular, we focus our attention on the
functions generated by P. Camion et al.’s
method. In order to achieve such a goal,
we present a simple method of generating
the same set of functions, which makes it
possible to construct correlation immune
functions with controllable correlation im-
munity and nonlinearity.

The rest of this paper is organized as
follows.  Section II introduces notations
and definitions that are needed in this pa-
per. In Section III, we derive an upper
bound for the nonlinearity of correlation im-

mune function. In Section IV, we describe
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our method for constructing correlation im-
mune functions and discuss some properties
of the generated functions that were already
analyzed in [4], which is rather complicated
compared to ours. We also suggest a con-
dition for obtaining maximal nonlinearity
of the functions. In Section V, we present
a systematic method to obtain correlation
immune functions with controllable nonlin-
earity and give an example. Section VI de-
scribes the relationship between the corre-
lation immunity and nonlinearity of func-
tions discussed in Section V. In particular,
we discuss the range of the correlation im-
munity of functions that have maximal non-
linearity. The conclusions are addressed in
Section VII.

Il. PRELIMINARIES

Let Z3 be the n-dimensional

vector space with the binary
n-tuples of elements x = (a1,
-, xy). For a=(ay,---,a,), b= (by,---,by)
in Z3, a-b=a1b) &--- ®ayb, is the inner
product of two vectors.
A function f is said to be balanced
if #{x | f(z) =0} =#{z | f(x) =1}. A
function f on ZJ is k-th order correlation
immune(1 < k <n) if f(z) is statistically
independent of any subset of k input vari-
ables z;,, -+, x; (1 <i; <--- <4 <n) and k
is called the correlation immunity of f. The
algebraic normal form of f is as follows:

flzy, ) =a0 Bz B+ Bayz,

Daox1T2D - D Ap—10Tn-1%Tn
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Da12301T223D - - -

69017772,7771,77 Tpn—2Tn—1Tn

Da12..nT1T2 - L.

The algebraic degree of a Boolean func-
tion, denoted by deg(f), is defined as the
maximum of the order of its product terms
that have a nonzero coefficient in the al-
gebraic normal form. A Boolean function
with deg(f) <1,ie., f(x)=ayDarx; -
a,Ty is said to be affine. In particular, if
ag =0, it is said to be linear.

For two Boolean functions f and g, we
define the distance between f and g by
d(f,9) = #{x | f(x) £ g(x)}. The minimum
distance between f and the set of all affine
functions A, i.e., minyep d(f, \) is called the
nonlinearity of f and denoted by Ay. In
most cases, it will be more convenient to
deal with f(:v) = (=1)/® which takes val-
ues in {—1,1}.

The definitions of balancedness, correla-
tion immunity and nonlinearity can be de-
rived from the notions of Walsh-Hadamard

transforms.

Definition 1. Let f be a Boolean function in
the vector space Z3. The Walsh-Hadamard
transform of f is the real-valued function F
over the vector space Z3 defined as

Flw) =" fla)(=1)"".

Lemma 1. A Boolean function f is balanced
if and only if F(0) = 0.

Lemma 2. [6] For a Boolean function f, fis
k-th order correlation immune if and only if
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F(w) =0 holds for any w with 1 < wt(w) <
k, where wt(w) is the Hamming weight of

w.

Lemma 3. Let f be a Boolean function of
n variables. The nonlinearity of f is

1 .
N;p=2""1— —max | F(w)|.
J 27w

Theorem 1(Parseval’s Theorem). Let f be
a Boolean function of n variables, then

> P w) =2

weZy

I1l. CORRELATION IMMUNITY
AND NONLINEARITY

It is well-known that the correlation im-
munity of a function on Z3 and its alge-
braic degree d are constrained by the rela-
tion k+d <n [1]. Naturally, we can imag-
ine that there may be a similar relationship
between the correlation immunity and non-
linearity.

In this section, we derive an upper
bound for the nonlinearity of the correla-

tion immune functions.

Lemma 4. If f:Z} — 25, then

Nf < 2n—1 B 2n—1
J = \/,]—7 ?

where 1 = #{w € 2§ | F(w) # 0}.

Proof. By Theorem 1, we have

7+ max | F(w) [>> Z]:'Q(w) =22,
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Hence, max | F(w) | > Therefore, by

Lemma 3, we have

on
\/7—].

1 .
./\/’f:2"_1 — g max | F(w) |
§2n—1 B 2n—1 .
Vi ([l
Theorem 2. If f: Z) — 2, is a k-th order
correlation immune function, then

n—1

\/@7

where C’“ZQH_{(T;)JF<Z>+"'+(Z>}'

Proof. Since f is k-th order correlation im-
mune, by Lemma 2, F(w) = 0 holds for any
w with 1 <wt(w) < k. Hence

Nf S 27771 _

n=2" —#{w € 23 | F(w }
<"—#{we Z7 |1 <wt(w) <k}

2”{(’;‘)+<) )

=Cp-

Therefore, the assertion holds by Lemma 4.
O

If f is balanced and k-th order correla-
=0,ie,n<(—1.

Hence we have the following:

tion immune, then F(0)

Corollary 1. For a balanced and k-th order
correlation immune function f: 23 — Z,

2n71

Nf S 27771 _ .
G—1
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IV. DESIGN OF CORRELATION
IMMUNE FUNCTIONS

Throughout this section, we set the follow-

ing notation:

n  an integer with n >4

k  an integer with 1 <k <n-—3

m  an integer with 1 <m<n—£k

¢  a function on Z3" into Z5~™ with
wt(op(y)) > k+1 for all y € Z5*

te #¢ (), vEZT

t maxt,

Ay d(y).

Now we present a method of constructing cor-

relation immune functions.

Theorem 3. Define a Boolean function f: 2 —
ZQ by
f(yam):Ay'ma (1)

where y = (y1,---,ym) € 21", & = (21, -,
ZTn—m) € 257", Then the followings hold:

(i
(ii

(iii

) f is balanced.

) f is k-th order correlation immune.

) Nf — on— 1 t2nfm71_

) Let A,(7) be the i-th component of A,,.
If ®,A,(i) =1 for some i(1 <i<n—
m), then deg(f) =m+1.

(iv

Proof.
(i) Since wt(A,) > k+1, we have A, # 0.

Thus Z(—

have

1) = 0. Therefore, we
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F(0)=3(—1)/0) = 3 (1)

Y,z Y,z

DI
y =z
By Lemma 1, f is balanced.

(ii) For any (b,a) € Z§ with 1 <wt(b,a) <
k, note that

ﬁ(b@):Z(_l)f(yw)(_1>(b,a)'(1/,ﬂf)
72 ‘L byCDzw:
:Z byz A ®a) < )
Y

Since 0 <wt(a) <k and wt(A,) > k+1,
we have a ® A, # 0. Thus
Z(—l)(Ay®a)'m = 0. Therefore, by

x

(2), we have F(b,a) =0. By Lemma 2,
f is k-th order correlation immune.

(iii) By (2), we know that

]_-(b a Z byz (Ay®a)-z

y

—on—m Z (_1>b~y_ (3)

{yl4,=a}

Hence we have

max | F(b,a) | —max\]—'(b a)| =t-2"™.

ba
By Lemma 3, Ny = on—1 _ 4. gn-m-1_
(iv) We note that

f,2)=( ®1) (1 ®1)- - (Y ®1)Ag - x

Sy ymA2’”—1 - .
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If ®,A,(¢) =1, then in the above expres-
sion, the term 31y -y, is not can-
celled. Hence deg(f) =m+1. d

Corollary 2. For any r: Zy' — Z, if we
define f(y,z) = A, -x®r(y), then properties
(i), (ii) and (iv) of Theorem 3 hold. And the
nonlinearity of f is bounded by

Nf S 27771 _ 2777m717 (4)

where equality holds if and only if ¢ is in-

jective, i.e., t=1.

Proof. We only prove (4), since the proofs
of rests are trivial. By (3), we have

Fha)y=2" 3 (-0 (5)
{ylAy=a}

Then max | F(bya) | > 2" and N; <
27171 _ 2nﬁmfl .

Suppose ¢ is injective, then clearly we
have N; =201 —27=m=1 by (5). Con-
versely, assume that ¢ is not injective and
H;3X|ﬁ (b,a)] = 2"™. Then by Parseval’s

Theorem, we have
22”:Zf2(b,a)
_Z Z F2(b,a)

b acim(¢p)

<2m2m22n 2m __ 2277,.

This is a contradiction. Therefore, equality
n (4) holds if and only if ¢ is injective. O

Similar results are studied in [4]. The
main advantage of our method is that it is

simple enough to analyze the relationship



394  Seongtaek Chee et al. ETRI Journal, volume 19, number 4, December 1997

between correlation immunity and nonlin- Proof. By Lemma 6, we have
earity. And, we derive the exact nonlin- natl nal a1
earity, while only a lower bound was given k41 k42 T n+1
in [4]. This fact drives us to study under {( n ) (n)} {( n ) ( n )}
= + + + +oe
what conditions we can make the nonlin- k+1 k k+2 k+1
earity maximal. + { (n) + < " ) } +1
n n—1

For convenience, we denote by C,"'(k) the - n n n

set of Boolean functions generated by The- IRAVES! + k42 R
!

(b))

The following lemma is useful to find + n-
conditions for maximal nonlinearity of a =2 { < bt 1) + (k—l- 2) +- (n) } + ( k) O

function in C"*(k).
Lemma 8. If [ > [;, then
Lemma 5. For given positive integers n and l l l
k(n>4,1 <k <n-—3), and any positive in- t{<k+1> + <k+2> +- 4 (l)} > on!
teger t, let I; be the smallest [ such that
where [; is the value defined in Lemma 5.

l l l e
t{ <k+1> + <k+2> ot <l>} >2m Proof. By the definition of I;,
Th have 211 <¢-2! j in{t- 2" [t = ) ) () s
en we have 2 <t¢-2" i.e., min{t-2"|t = kil k42 L) (= :
1,2,---} =20,
Si 1>1 h
To prove Lemma 5, we need some lem- HHee b = b, W Have
mas. Lemma 6 is well-known and we omit " ! n ! T ! I !
. k+1 k+2 ly l
its proof.
() () -+ 0))
Lemma 6. For positive integers n and k, k+1 k+2 l
the following holds. >l >l 0
<n> B (n— 1) <n—1) Now, we are ready to prove Lemma 5.
K K =l Proof of Lemma 5. If t =1, then t- 2 =24,
So let’s show that -2 > 28 when ¢ > 2.
Lemma 7. For positive integers n and k, If ¢t > 2, then there is p (p > 1) such that
the following holds. 2 <t <20t If [ —p <, then

) n N (n N (n t-2f >¢.9h=p > opoh—p — ol
k+1 k+2 n

n+1 n41 n4+1 Hence if Iy —p <}, the proof is completed.
< <k+1> <k+2> T <n+ 1)' It remains to show that the case I; <Il; —p
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can not happen. Suppose l; <l —p, i.e.,
l; <ly —p—1. Then, by Lemma 8§,

h—p-1 Lh—-p-1
t
)+
h-p-1 e
> on (lh—p 1).
Jr(ll —p—1>} - 0

Also, by Lemma 7,
llfpfl llfpfl llfpfl
t{( k1 >+< k+2 >+"'+(z1—p—1>}
li—p—1 li—p—1
<9p+l 1
(V) ()
llfpfl
+(ll—p—1>}
<9p llfp + llfp 4ot llfp (7)
- k+1 k+2 Li-p) |
By applying Lemma 7 to (7), we obtain
hi—p—-1 h—-p-1 lhi—p-1
t{( k1 )*( k+2 >+"'+(z1—p—1>}
h—1 h—1 lh—1
< .
_2{<k+1> +(k+2>+ +(11—1>}

Hence by (6),

li—1 -1 li—1 —(h—p-1
> on—=(h—p-1)
(1) (ia) o () =2

Since p > 1, we have
-1 -1 -1 4
> on—li+p
(i20) () o+ ()22
> 2n—(l1—1).

By the definition of I, I; <Il; —1. But this

is a contradiction. O

The following theorem is one of the ma-

jor results in this paper.

Theorem 4. For f e (C]'(k) , the maximal
nonlinearity of f is Ny =271 -2~ and it
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can be obtained if m=n—1[;, t =1, where

l1 is the value defined in Lemma 5.

Proof. By the definition of A,, ¢ and m
satisfy the following inequality:

G s e

(®)

In (8), if we substitute n —m with [, then

Ao () e ()

(9)

and Ny =21 —¢.2"1 by Theorem 3-
(iii). Hence for each ¢ (t =1,2,---), the
maximum nonlinearity is obtained if [ is
the smallest value satisfying (9). That
is, mﬂ‘%x./\[f = mlax./\/f = ol .okt
Therefore, by Lemma, 5,

max,, ; Ny
=max;; Ny =2""! —min, ¢- 21!

:2n—1 _ 211 -1

V. CONSTRUCTION OF
CORRELATION IMMUNE
FUNCTIONS WITH
CONTROLLABLE
NONLINEARITY

In this section, by using Theorem 4, we
suggest a method for constructing corre-
lation immune functions with controllable

nonlinearity .
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Method for constructing k-th order correlation
immune functions
with nonlinearity N =271 — 201

Input. n (n > 4; the number of input variables of

Boolean function),
k (1 <k <n—3; correlation immunity)
Step 1. For k+1 <[ <n, find the smallest [

satisfying

(kil) * (ki2> et @ 22" (10)

and call this value [;.

Step 2. Choose 2"t vectors Ay, Ay, -, Agn 1y
in Zél with weight greater than or
equal to k+1.

Step 3. Define f: Z} — 2, by

f(yla'"7yn—llamla"'7mll) = f(y,fl?') = AU:E

We now discuss the above method step
by step. First, for the input, since a func-
tion with algebraic degree 0 is constant, it
is not balanced. And a function with alge-
braic degree 1, i.e., an affine function, is of
nonlinearity 0. Moreover, the sum of cor-
relation immunity k and algebraic degree
d for a function f is less than or equal to
the number of input variables n and in par-
ticular if f is balanced, k+d <n—1 [1].
Hence, for a balanced, nonlinear and corre-
lation immune function, we have

k+d<n-1,k>1,d>2.
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That is, 1 <k <n—1—d <n—3, where the
smallest n is 4.

The second, in Step 1, by the above, k+
2<n-—1. Hence

n—1 n—1 n—1
(k—i—l) * <k+2) A <n—1>
> <”1) n (”1) >2
—\k+1 k+2)—
Hence we can find [;(l; <n—1) satisfying
(10) in Step 1.
The third, in Step 2, the number of vec-

tors in Zél with weight greater than or equal
tok+11is

(et )+ (ry)++ (1)

and it is greater than or equal to 2"~ by
Step 1. Hence we can choose 2" vectors
with weight greater than or equal to k -+ 1.

The function defined in Step 3 fulfills
the requirements of Theorem 4. So the bal-
anced k-th order correlation immune func-
tion in Step 3 has nonlinearity Ny =2""! —
2h—L,

Example 1. We construct a balanced

and nonlinear 1st order correlation immune
function f: 27 — 2.
Input: n="7,k=1
. 3 3 7-3
Step 1: Since 5 + 3 7 2 and

4 4 4
<2> + <3> + <4> > 2774, we have {; =
4

Step 2: Choose 8 vectors A; € Z; with
wt(A;) > 2, say

Ay =(1,1,0,0) A; =(1,0,1,0)
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A2:(1303071) A :(0313170)
A= (0,1,0,1)  As = (0,0,1,1)
A6:(1,1,1,0) A7:(1717071)'

Step 3: Define f: Z] — 25 as follows.

fy,x)=A4y - 2= (10 O1)(1r®1)(ys ®1) (21 Dx2)

Sy & 1) (2@ )ys(z1©x3)
Sy & 1)y (ys B 1) (21 S 24)
O(y1 @ 1)yays(z2 O 73)
Sy (g ®1)(ys 1) (22 © 24)
Oy1(y2 ©1)ys(x3 D xs)
Dy1y2(ys 1) (x1 ©w2 D w3)
Sy1ys(1 Dxr Day).

Then f is balanced, 1st-order correla-
tion immune with Ny =20 —2% =56. And,
since @, A,(1) =1, ®,A4,(2) =1, ®,A4,(3) =
0, and ®,A4,(4) =0 by Theorem 3-(iv),
deg(f)=n—-0L1+1=4.

VI. NONLINEARITY AND
CORRELATION IMMUNITY
OF C;'(K)

We now discuss the relationship between
correlation immunity and nonlinearity of

functions in C)'(k).

Lemma 9. Let n, k, 1 be given as Lemma
5. Then [ > [gJ +1.

Proof. By the definition of [y,

(L Y () 2
k+1 k42 L)~ '
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Thus

2h —gnh > (g) + (l11> +o <2> (11)

Since the right hand side of (11) is positive,
L >n—1lp. Tnall, [ > gJH. 0

Lemma 10. The necessary and sufficient

condition for two integers n and x to satisfy

1
the following equation is x < {%J .

(xil) * (J;L) Tt (Z) >2mt (12)

Proof. If n is even, then

<n> + < n ) + - + (n> > 27771
JARCES! n |
)L ) e () <2
7+1 5’-1—2 n

So, (12) holds if x < { —21_ J And, if n is
odd, then

P () () =2
nt) Fm ) TE

1
So, (1 )hold51fx<{ _2|— J O

Theorem 5. For a Boolean function f in
C™(k), we have Ny < 2"t —203)] and the
equality holds if and only if k£ satisfies the
following:

241 241 241 .
2 + 2 44 B 225*1
k+1 k+2 5+1
if n is even,
k< HJ if n is odd.
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Proof. By Lemma 9, since [; > {gJ +1, we

have

Np=2nt_oh=t <onl_ols))

and the equality holds if I; = {gJ +1. Hence

by the definition of I;, equality holds if the
followings are satisfied:

() (230 (32

> 27L—(|_%J+1)7 (13>

81 4 (L84 (131) <ot
<k+1 e T () <2 - (14)
Since (14) holds for any k, equality holds if
and only if (13) holds. If n is odd, since the
right hand side of (13) is 2l%J, by Lemma
10, (13) holds if and only if

k+1< V%JF;HJJ = V_lJH: PJ—H

4 4

. n

ie, k< LZJ O
n

By Theorem 5, we can construct {ZJ—

th order correlation immune functions with

nonlinearity 27! — 25} if n is odd. If n is
even, we have the following:

Corollary 3. If n is even and Ny =2""1 —
213 the approximative upper bound of the
correlation immunity k& in Theorem 5 is

n n
< |- . — .
k{4+0335 2+1J (15)

The proof of Corollary 3 is left to the
appendix.

In fact, for n=4,6,---,98,100, if a func-
tion has nonlinearity Ny = 271 235 which
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is the maximum among functions in C)"'(k),
the range of correlation immunity given in
Corollary 3 is actually correct except only
for the case n =38. In that case, (15) gives
k <10, where, in fact, £ <11.

It is natural to question what is the
range of k if the nonlinearity of function
in C]"(k) is fixed. The following corollary,
which can be verified similarly to Corollary

3, solves the problem.

Corollary 4. If the function in C)'(k) has
nonlinearity Ny =2"~1 —2171 then the ap-
proximate range of the correlation immu-
nity k is as follows:

2 2

LH—-1 1
k< \‘ 12 Jré\/EZQanlJ,

L-1 1 V-1
\‘ ! + a + L ZQn?(lll)J
2
<

where P(Z > z,) =« and Z ~ N(0,1).

For the case where a function in C'(k)
has maximum correlation immunity, we

have the following:

Let k =n—3. Then the
maximum nonlinearity of Boolean function
feCn(k)is Ny =2""1—-272 =212,

Corollary 5.

Figure 1 represents the relationship bet-
ween correlation immunity and nonlinearity
of functions in C)'(k) for n = 22. Since the
nonlinearity is too big to investigate its be-
havior precisely as k increases, we present
the relationship between the correlation im-
munity and l; —1, which determines the
nonlinearity in Fig. 2 as a solid line. In
Fig. 2, the dotted curve, which is derived
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6
8]
T
|

Nonlinearity / 10
>
T
!

I I I I
5 10 15 20
k: Correlation immunity

Fig. 13. Relationship between nonlinearity and cor-

relation immunity.

. ® Derived from

ey Corollary 3

® Derived from
Theorem 2

Log:(2"" - N))
=
T

.
.-
10 | osoesoso

0 I I I I
5 10 15 20
k: Correlation immunity

Fig. 14. Relationship between I; — 1 = logy (2"} —
Ny) and correlation immunity.

from Theorem 2 is concerned with ‘general’
correlation immune functions. We notice
that the nonlinearity does not decrease un-
til the correlation immunity k reaches about
|n/4].

From the above two corollaries, we can
construct Boolean functions with control-
lable nonlinearity and correlation immu-
nity. Even though the range in the Corol-
laries 3 and 4 are approximative, the error
range was verified as small enough by our

simulations.
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VII. CONCLUSIONS

The main results of this paper are as-
sociated with studying the relationship be-
tween correlation immunity and nonlinear-
ity of functions in [2], [4]. Such results were
possible by making the generating method
simple and clear enough to discuss several
properties. This paper may provide us with
a new avenue towards studying the rela-
tionship between correlation immunity and

nonlinearity.

APPENDIX

Proof of Corollary 3. If a random variable
X has the binomial distribution with pa-

rameters n and %, ie, X~b <n, %), then

e -£) ()

k=x

Hence the condition for Theorem 5 holds if

P(X >k+1) >

e

1
where X ~ b <g +1, 5) Then the follow-

1
ing holds ifX~b<g—|—1,§> and g—l—l is

large enough.!

P41
k— +z
P(X<k~P|z< 22|,
Lm
2\ 2

1
In general, we assume that (g —0—1) 3> 5, ie.,

%1510
- .
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where Z ~ N(0,1). Since P(Z <0.67) =
0.7486 ~ 2, we have

1n+1
2V 2

Since k < Z+0.335,/g+1, we have
n n
< |- . — .
k< \‘4+0335’/2+1J

ACKNOWLEDGMENT

The authors are grateful to anonymous ref-
erees for their comments. We also give special
thanks to Dr. Soo Hak Sung, Sung Mo Park and
Dr. Jung Hee Cheon for helpful discussions.

REFERENCES

[1] T. Siegenthaler, “Correlation immunity of non-
linear combining functions for cryptographic ap-
plications,” IEEE Trans. on Inf. Th., vol. 30,
pp. 776-780, 1984.

[2] P. Camion, C. Carlet, P. Charpin, and N.
Sendrier, “On correlation-immune functions,”
Advances in Cryptology-CRYPTO’91, Springer-
Verlag, pp. 86-100, 1992.

[3] W. Meier and O. Staffelbach, “Nonlinearity
criteria for cryptographic functions,” Advances
in Cryptology - EUROCRYPT’89, Springer-
Verlag, pp. 549-562, 1990.

[4] J. Seberry, X. M. Zhang, and Y. Zheng, “On
constructions and nonlinearity of correlation im-
mune functions,” Advances in Cryptology - EU-
ROCRYPT’93, Springer-Verlag, pp. 181-199,
1994.

ETRI Journal, volume 19, number 4, December 1997

[5] Y. Xian, “Correlation-immunity of Boolean
Electronics  Letters, vol. 23,
pp. 1335-1336, 1987.

functions,”

[6] G. Xiao and J. Massey, “A spectral character-
ization of correlation-immune combining func-
tions,” IEEE Trans. on Inf. Th., vol. 34, pp.
569-571, 1988.

Seongtaek Chee received
B.S. and M.S. degrees in
mathematics from Sogang
University in 1985 and
1987, respectively. Since
1989 he has been on the
research staff at ETRI,
where he is currently a senior member of Coding
Technology Department. His research interests are

cryptographic functions.

Sangjin Lee received Ph. D.
in mathematics from Korea
University, Seoul, Korea in
1994. He joined ETRI in
1989, where he is currently
working as a senior member
of Coding Technology De-
partment. His research interests include finite filed
theory, cryptography, and cryptanalysis.

Kwangjo Kim received the
B.S. and M.S. degrees in
electronic engineering from
Yonsei University in 1980
and 1983 respectively. He
also received the Ph.D de-
gree in electrical and infor-
mation engineering from Yokohama National Univer-
sity, Japan in 1991. Since 1979 he has been with
ETRI and is currently working at Department of
Coding Technology. He served as a program co-chair
of Asiacrypt’96 conference which was held in Ky-

ongju, Nov. 3~7, 1996. His current interests include



ETRI Journal, volume 19, number 4, December 1997

information security, cryptology and microwave com-
munications. He is now a member of IEEE, TACR
and IEICE and a director of KIISC.

Daeho Kim received M.S. de-
gree in electrical engineering
from Hanyang University in
1984. He joined ETRI in
1977, where he is currently
working as Director of Cod-
ing Technology Department.
His research interests include coding theory, informa-
tion security, and cryptology. He is a regular member
of the Korean Communication Professional Engineer

Association.

Seongtaek Chee et al.

401



