• Title/Summary/Keyword: Bone tissue engineering

Search Result 298, Processing Time 0.033 seconds

Slippage Behavior Due to the Calcaneus Fixation and Achilles Tendon Soft Tissue in Posterior Cruciate Ligament (PCL) Reconstruction (PCL 재건술용 아킬레스 이식건의 종골편 고정법과 연부조직 고정법에 따른 활주거동)

  • Kim, Cheol-Woong;Lee, Ho-Sang;Bae, Ji-Hoon;Wang, Joon-Ho;Park, Jong-Woong;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1527-1532
    • /
    • 2008
  • 45% of the sports accidents is the knee damage and the representative case is the damage of an Anterior Cruciate Ligament (ACL) and the Posterior Cruciate Ligament(PCL). Although the past different views of ACL reconstruction comes to an agreement, the disputes of PCL is remained yet. The most important engineering approach for these various surgery techniques is accurately to understand and to evaluate the fatigue behavior depending on the stress flow and the stress distribution under the allotted load and the cyclic load, which are caused by the graft fixing device, the proximal tibia of the PCL reconstructing structure. Therefore, this study is the basic research of these above facts. The current transtibial tunnel surgery using the cadaveric Achilles tendon grafts is chosen for the various PCL reconstruction. The relationships between the slippage, the extension ratio, and the slippage ratio by the heel bone fixing method and the soft tissue fixing method of the Achilles tendon were also defined. This research will be the essential data to help the resonable operating techniques for the next PCL reconstruction.

  • PDF

The Effects of Chitin Derivative and Hydroxyapatite Compound in Canine Bone (키틴 유도체와 하이드록시아페타이트 복합체가 개의 뼈에 미치는 영향)

  • Lee, Hae-Beom;Shin, Seung-Ho;Kim, Min-Su;Lee, Ki-Chang;Chung, Yong-Sik;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.25 no.5
    • /
    • pp.370-378
    • /
    • 2008
  • The aim of this study was to investigate bioactivities of 50% Chitin - hydroxyapatite (Chitin-H) compound and 50% Chitosan - hydroxyapatite (Chitosan-H) compound in canine bone. Ten healthy mongrel dogs (1-5 years old, 1.7 - 6.9 kg) were used in this study. These compounds had been transplanted into bilateral femur separately, and then the changes of femur were observed through the examinations of hemato-biochemical profiles, radiology, and histological profiles for 42 days. After 3 weeks, expanded radiolucent changes were observed in both areas transplanted the compounds. After 6 weeks, the area transplanted the Chitin-H compound did not observe any changes of bony tissue, while the area inserted the Chitosan-H compound was observed changes of increasing bone formation. In histological examination, infiltrations of inflammatory cells and bone absorptions were observed at both transplanted sites. However an increasing of active osteogenesis was observed at the transplanted site with Chitosan-H compound. In conclusion, Chitosan-H compound had an function of active osteogenesis as compared with Chitin-H compound. From this study, it is indicated that Chitosan-H compound would be used in dogs with severe bone defect.

Degradation rate of several types of Calcium Polyphosphate;Long term results (다양한 형태의 다공질 Calcium Polyphosphate의 생분해성에 관한 장기적인 연구)

  • Yang, S.M.;Seol, Y.J.;Kye, S.B.;Lee, I.K.;Lee, C.W.;Kim, S.Y.;Lee, Yong-Mu;Ku, Y.;Han, S.B.;Chung, C.P.;Choi, S.M.;Rhyu, I.C.
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.301-310
    • /
    • 2003
  • The purpose of this study is to evaluate the biocompatibility and the biorsorbability of several types of calcium polyphosphate made through change of manufacturing process for 12 month. To solve limitation of calcium phosphate, we developed a new ceramic, Calcium Polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$ and then milled to produce CPP powder. CPP powder, CPP block, and CPP granules added with $Na_2O$ were implanted in extraction sockets and histologic observation were performed at 12 months later. Like 3 months results, histologic observation at 12 months revealed that CPP matrix were mingled with and directly apposed to new bone without any adverse tissue reaction, CPP powder show direct bony contact, but new bone formation and fibrous tissue encapsulation showed in CPP block. 10% $Na_2O$ CPP granules show more inflammatory cells infiltration around graft materials compared at 3 month, but 15% $Na_2O$ CPP granules show less. This result revealed that regardless of addition of $Na_2O$, CPP had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ help biodegradation but optimal concentration of $Na_2O$ and other additive component to increase degradation rate should be determined in further study.

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

A study for improving the surgical mess using palatal and buccal mucosal incisions in oral and maxillofacial area (구개점막과 협점막의 절개에 사용되는 칼의 개선을 위한 기초 연구)

  • Seo Byoung-Moo;Choi Jin-Young;Lee Jong-Ho;Kim Myung-Jin;Choung Pill-Hoon
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Disposable blade is widely used for palatal and oral mucosal incision in oral and maxillofadal surgery nowadays, But its design and durability need for improvement, Especially, there are so many hard tissues intraoral area, such as bone and tooth, therefor the sharpness of the surgical blade was easily destroyed, The purpose of this study was to make basic data for developing new design of surgical blade using in oral and maxillofacial area including for the patients who have cleft lip and palate deformities, Some questionnaires about the usefulness of currently used surgical blades were sent to 150 dentists, the 54 of them made a reply, Secondly, The used-once blade and fresh new blade were examined under the scanning electron microscope with the 4000-times magnification, Lastly, the tissue reaction following the surgical incision with a fresh-new and a used blade on rat buccal cheek mucosa and hard palate was evaluated with light microscope with hematoxilin-eosin staining, The time interval from the surgical trauma to taking a sample were 1 day, 3 days, 7 days, and 14 days, At each time schedule, 2 Sprague-Dawley rats were sacrificed, Many dentists were agreed to need for changing the design of the surgical blades and also demand to improve the durability of the blades, They were also eager to adopt the new design of blade if it was available, The blade used in surgical extraction procedure was heavily damaged in its sharpe edge of number 15 blade, The histological differences were not prominent, but the delayed healing was detected in buccal mucosal defects especially in the surgical group with used blade, There are slight different changes in hard palatal defects between a used and a new blade group, In this study, we could find that there are imperative demanding on improvement of surgical blade design and durability for oral and maxillofadal area, The blade currently using in surgical extraction was easily damaged, The animal model of this study was not perfect for the purpose of this study.

  • PDF

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.

Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks

  • Spear, Rose L.;Symeonidou, Antonia;Skepper, Jeremy N.;Brooks, Roger A.;Markaki, Athina E.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.143-157
    • /
    • 2015
  • Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

The Analysis of Bone regenerative effect with carriers of bone morphogenetic protein in rat calvarial defects (백서두개골 결손부에서 BMP전달체의 골재생효과분석)

  • Jung, Sung-Won;Jung, Jee-Hee;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.733-742
    • /
    • 2007
  • Bone morphogenetic proteins have been shown to possess significant osteoinSductive potential, but in order to take advantage of this effect for tissue engineering, carrier systems are essential. Successful carrier systems must enable vascular and cellular invasion, allowing BMP to act as a differentiation factor. The carrier should be reproducible, non-immunogenic, moldable, and space-providing, to define the contours of the resulting bone. The purpose of this study was to review available literature, in comparing various carriers of BMP on rat calvarial defect model. The following conclusions were deduced. 1. Bone regeneration of ACS/BMP, ${\beta}-TCP/BMP$, FFSS/BMP, $FFSS/{\beta}-TCP/BMP$, MBCP/BMP group were significantly greater than the control groups. 2. Bone density in the ACS/BMP group was greater than that in ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$ carrier group. 3. Bone regeneration in FFSS/BMP group was less than in ACS/BMP, ${\beta}-TCP/BMP$, MBCP/BMP group. However, New bone area of $FFSS/{\beta}-TCP/BMP$ carrier group were more greater than that of FFSS/BMP group. ACS, ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$, MBCP were used for carrier of BMP. However, an ideal carrier which was reproducible, non-immunogenic, moldable, and space-providing did not exist. Therefore, further investigation are required in developing a new carrier system.

Preparation and Characterization of PLGA Scaffold Impregnated Keratin for Tissue Engineering Application (케라틴이 함유된 조직공학적 PLGA 지지체의 제조 및 특성 분석)

  • Oh, A-Young;Kim, Soon-Hee;Lee, Sang-Jin;Yoo, James J.;Dyke, Mark van;Rhee, John M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.403-408
    • /
    • 2008
  • Keratin is the major structural fibrous protein providing outer covering such as wool, hair, and nail. Keratin is useful as natural protein. We developed the keratin loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds (keratin/PLGA) for the possibility of the application of the tissue engineering using bone marrow mesenchymal (BMSCs). Keratin/PLGA (contents 0%, 10%, 20% and 50% of PLGA weight) scaffolds were prepared by solvent casting/salt leaching method. We characterized porosity, wettability, and water uptake ability, DSC of keratin/PLGA scaffold. We seeded BMSCs isolated from the femurs of rat into the inner core of the hybrid scaffold. Celluar viability were assayed by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) test. We confirmed that keratin/PLGA scaffold is hydrophilic by wettability, and water uptake ability measurement results. In MTT assay results, cell viability in scaffolds impregnated 10 and 20 wt% of keratin were higher than other scaffolds. In conclusion, we suggest that keratin/PLGA scaffold may be useful to tissue engineering using BMSCs.