• Title/Summary/Keyword: Bone remodeling

Search Result 344, Processing Time 0.029 seconds

Inhibition Effects of Natural Products on Osteoclast Differentiation (천연물 추출물의 파골세포 분화억제 효과 검색)

  • Lee, Hyo-Jung;Yu, Mi-Hee;Lee, Syng-Ook;Kim, Hyun-Jeong;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.997-1004
    • /
    • 2005
  • In bone remodeling imbalances that are caused by increased bone resorption over bone formation lead to adult skeletal diseases. Thus, we have screened various natural products for their ability to regulate the differentiation of osteoclasts to propose candidates for the prevention or treatment of osteoporosis. Scutellaria baicalensis Georgi and Zizyphus Jujuba Miller var. extracts of 140 natural products inhibited the differentiation of RAW264.7 cells into osteoclast, as showed by the reduced number of tartrate resistant acid phosphatase(TRAP)-positive multinucleated cells and decreased TRAP activity.

Inhibition of mRANKL Expression by Doxycycline in Rat Periodontal Ligament Cells (백서 치주인대세포에서 Doxycycline에 의한 mRANKL 발현 억제)

  • Cho, Kwan-Pyo;Cui, De-Zhe;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.335-344
    • /
    • 2006
  • Osteoblast or bone marrow stromal cell-derived RANKL is the major effector molecule essential for osteoclastogenesis. Previous studies have shown that tetracyclines have beneficial therapeutic effects in the prevention and treatment of inflammatory bone disease including periodontal disease. Periodontal ligament cells are thought not only to play an important role in the progression of periodontal disease, but to play an important role in alveolar bone remodeling. Previous studies indicated that receptor activation of nuclear factor $\kappa\;B$ ligand (RANKL) and osteoprotegerin (OPG) are expressed in periodontal ligament cells by pro-inflammatory cytokine, such as $IL-1{\beta}$ and $TNF-{\alpha}$. This study was designed to investigate the inhibitory effect of doxycycline on RANKL and OPG mRNA in rat periodontal ligament cells induced by $IL-1{\beta}$ (1 ng/ml). The results are as follows; 1. MTT assay showed that doxycycline at the concentration of $1-50\;{\mu}g/m{\ell}$ didn't result in statistically significant cell death at day 1 and 3. 2. RANKL mRNA expression was increased to 2.6 folds by $IL-1{\beta}$. When cells were treated with doxycycline ($50{\mu}g/m{\ell}$), $IL-1{\beta}$ -induced mRANKL expression was reduced by 33%. In contrast to RANKL, OPG mRNA expression was not inhibited by pre-treatment with doxycycline. These results suggest that doxycycline decrease the expression of mRANKL resulting in regulation of osteoclastogenesisp in rat periodontal ligament cells.

Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts (Angiopoietin-2가 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Ko, Seon-Yle
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.17-25
    • /
    • 2006
  • The present study was undertaken to determine the possible cellular mechanism of action of angiopoietin-2 in bone metabolism. The effects on the osteoblasts were determined by measuring 1) cell viability, 2) alkaline phosphatase (ALP) activity, 3) gelatinase activity, and 4) nitric oxide production. The effects on the osteoclasts were investigated by measuring 1) tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation, and 2) resorption areas after culturing osteoclast precursors. Angiopoietin-2 treatment showed a significant increase in both the viability and ALP activity of osteoblasts. Angiopoietin-2 increased the activity of gelatinase and nitric oxide production. In addition, angiopoietin-2 decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL), and inhibited osteoclastic activity in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, angiopoietin-2 may be a regulatory protein within the bone marrow microenvironment.

Lateral Ankle Ligament Reconstruction using Achilles Allograft for Chronic failed Instability - Two Cases Report - (동종 아킬레스건을 이용한 만성 족관절 불안정성의 외측인대 재건술 -2예 보고-)

  • Choo, Suk-Kyu;Suh, Jin-Soo;Amendola, Annunziato
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2005
  • We performed lateral ankle ligament reconstructions using Achilles allograft on patients who had failed previous Brostrom repair. The bone plug is fixed with an interference screw into the calcaneus, the tendon graft is passed through a fibular tunnel, and then anchored into the talus with the biotenodesis screw. The graft is strong enough to maintain joint stability until graft incorporation and remodeling occurs. In patients with chronic failed lateral ankle instability requiring graft for ligament reconstruction, this technique allows anatomic reconstruction without the need to sacrifice autogenous peroneal tendons.

  • PDF

An Evaluation of Low Intensity Ultrasonic Characteristics for Arthritis Healing (저강도 초음파의 관절염 치료 적용성 평가)

  • Hong Sung-Min;Han Seung-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.787-794
    • /
    • 2005
  • Nowadays chronic degenerative diseases such as arthritis are increasing rapidly, even though acute infectious diseases are decreasing due to the advance of modern medicine. Although many of remedies are developed for arthritis healing, there is no precise medical prescription, and pathogenesis is not examined exactly. In this study, we confirmed gene expression of BMP 1A, BMP 2B, osteonectin and MGP which are genes related with bone formation in osteoblast by using ultrasonic stimulation. Through this study, we also evaluated the fact that ultrasound could be applied to arthritis healing by making activated osteoblast induce remodeling of cartilage. As a result of this research, BMP 2B and MGP have higher rates of expression in specific ultrasound mode. In conclusion, it is expected that ultrasound could be used efficiently for healing arthritis if we use ultrasounds according to symptoms of arthritis on reasonable terms.

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook;Namgung, Cheol;Lee, Jong-Ho;Lim, Young-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

THE EFFECTS OF MECHANICAL FORCE ON CULTURED PERIODONTAL LIGAMENT CELLS IN VITRO (물리적 외력이 배양중인 치주인대세포에 미치는 영향)

  • Kim, Hyun-young;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.295-301
    • /
    • 1994
  • The movement of teeth during orthodontic treatment requires bone remodeling process in periodontal tissue. To find out the changes occuring in the cell itself, mechanical force was applied to the cultured periodontal ligament cells. Following results were obtained from measuring the changes in cyclic AMP and $PGE_2$, $^3H$-thymidine incorporation amount in time lapse after application of mechanical force. 1. When mechanical force was applied to cultured PDL cells, the amount of cAMP in cells were increased significantly after 15 min. of force application, but were decreased gradually as time lapsed. 2. When mechanical force was applied to cultured PDL cells, the amount of PGE2 were increased at 20,40,60 min. and was significantly increased at 20 min. 3. When mechanical force was applied to cultured PDL cells, the amount of $^3H$-thymidine incorporation was some increased, but was not statistically significant.

  • PDF

Activated Rap1A Induces Osteoblastic Differentiation and Cell Adhesion

  • Kim, Hyeseon;Jeon, Taeck J.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Rap1 is a key regulator of cell adhesion and migration. Although increasing evidence indicates that the Rap1 signaling pathway is involved in the process of bone remodeling, the mechanism by which Rap1 regulates osteoblastic differentiation and cell adhesion remains unknown. Here, we investigated the morphological characteristics and osteoblastic differentiation of cells expressing constitutively activated form of Rap1A (Rap1ACA) or Rap1 GTPase activating protein Rap1GAP and found that activated Rap1 induces osteoblastic differentiation and cell adhesion as well as cell spreading. When osteoblastic differentiation was induced, Rap1ACA cells showed considerably higher levels of calcium deposits than the wild-type and Rap1GAP-overexpressing cells did. Rap1ACA cells showed increased spreading and size, as well as strong cell adhesion and significantly decreased growth rates. F-actin staining using phalloidin revealed several thin thread-like filopodia around the protrusions in Rap1ACA cells, which possibly contribute to the increased cell adhesion.

Isoflavones extracted from Sophorae Fructus upregulate the growth factors, IGF-I and TGF-$\beta$ in MG-63 cells

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Min-Won;Choi, Young-Wook;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.140.3-141
    • /
    • 2003
  • Isoflavones have been a central subject in natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are an important turning point in that they can act like estrogen by binding on estrogen receptors on target cell surface. We, therefore, believed that isoflavones may be applied in estrogen deficiency disease such as osteoporosis in terms of estrogen replacement therapy (ERT). As commonly known, osteoporosis is one of hormonal deficiency diseases, especially in menopausal women. (omitted)

  • PDF

Biocompatible polymeric rods as implants for enhanced cartilage regeneration

  • Yook , Yeo-Joo;Hwang, Jeong-Hyo;Shim, In-Kyung;Lee, Jue-Yeon;Lee, Sang-Young;Ahn, Hyun-Jeong;Lee, Sang-Hoon;Lee, Myung-Chul;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.235.1-235.1
    • /
    • 2003
  • With an aim of obtaining high efficacy in cartilage regeneration, implantable polymeric rods were fabricated. These rod-type matrices were anticipated to perform structural tissue supporting activity and enhance extracellular matrix (ECM) formation by releasing specific agent, DHEA-S, in controlled manner. It is expected that application for the drilling operation on the articular cartilage of OA patients as the implants may promote regeneration of their cartilage. Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone remodeling, spur formation, and synovial inflammation. (omitted)

  • PDF