Browse > Article

Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts  

Ko, Seon-Yle (Department of Oral Biochemistry, Dental Research Institute, School of Dentistry, Dankook University)
Publication Information
Journal of Oral Medicine and Pain / v.31, no.1, 2006 , pp. 17-25 More about this Journal
Abstract
The present study was undertaken to determine the possible cellular mechanism of action of angiopoietin-2 in bone metabolism. The effects on the osteoblasts were determined by measuring 1) cell viability, 2) alkaline phosphatase (ALP) activity, 3) gelatinase activity, and 4) nitric oxide production. The effects on the osteoclasts were investigated by measuring 1) tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation, and 2) resorption areas after culturing osteoclast precursors. Angiopoietin-2 treatment showed a significant increase in both the viability and ALP activity of osteoblasts. Angiopoietin-2 increased the activity of gelatinase and nitric oxide production. In addition, angiopoietin-2 decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL), and inhibited osteoclastic activity in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, angiopoietin-2 may be a regulatory protein within the bone marrow microenvironment.
Keywords
Angiopoietin-2; Osteoblast; Osteoclast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Horner A, Bishop NJ, Bord S, et al. Immunolocalisation of vascular endothelial growth factor (VEGF) in human neonatal growth plate cartilage. J Anat 1999;194:519-524   DOI
2 Ryan AM, Eppler DB, Hagler KE, et al. Preclinical safety evaluation of rhuMabVEGF, an angiangiogenic humanized monoclonal antibody. Toxicol Pathol 1999;27:78-86   DOI   ScienceOn
3 Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine 2003;70:321-326   DOI   ScienceOn
4 Harper J, Klagsbrun M. Cartilage to boneangiogenesis leads the way. Nature Med 1999;5:617-618   DOI   ScienceOn
5 Kim I, Kim JH, Ryu YS, Liu M, Koh GY. Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2000;269:361-365   DOI   ScienceOn
6 Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999;79:213-223   DOI   ScienceOn
7 Siffert RS. The role of alkaline phosphatase in osteogenesis. J Exp Med 1951;93:415-422   DOI   ScienceOn
8 Galis ZS, Muszynski M, Sukhova GK, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzyme required for extracellular matrix digestion. Circ Res 1994;75:181-189   DOI   ScienceOn
9 Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. PNAS 2003;100:8904-8909   DOI   ScienceOn
10 Takahashi N, Akastu T, Sasaki T, et al. Induction of calcitonin receptors by 1$\alpha$,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinol 1988;123:1504-1510   DOI   ScienceOn
11 Danziger R, Zuckerbraun B, Pensler J. Role of nitric oxide in the regulation of osteoblast metabolism. Plastic and Reconstruc Surg 1997;100:670-673   DOI
12 Davis S, Aldrich TH, Jones PF, et al. Isolation of agniopoietin-1, a ligand for the TIE1 receptor, by secretion-trap expression cloning. Cell 1996;87:1161-1169   DOI   ScienceOn
13 Nijweide PJ, Burger EH, Feyen JHM. Cells of bone:Proliferation, differentiation, and hormonal regulation. Physiol Rev 1986;66:855-886   DOI
14 Minkin C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 1982;34:285-290   DOI   ScienceOn
15 Fauran-Clavel MJ, Oustrin J. Alkaline phosphatase and bone calcium parameters. Bone 1986;7:95-99   DOI   ScienceOn
16 Horner A, Bord S, Kelsall AW, Coleman N, Compston JE. Tie2 ligand angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 2001;28:65-71   DOI   ScienceOn
17 Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999;43:S42-S51   DOI   ScienceOn
18 Johnson JL, van Eys GJ, Angelini GD, George SJ. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 2001;21:1146-1151   DOI   ScienceOn
19 Sasaki T, Takahashi N, Higashi S, Suda T. Multinucleated cells formed on calcified dentin from mouse bone marrow cells treated with 1$\alpha$,25-dihydroxyvitamin D3 have ruffled borders and resorb dentin. Anat Rec 1989;224:379-391   DOI   ScienceOn
20 Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilate remodeling, ossification and angiogenesis during endochondral ossification. Nature Med 1999;5:623-628   DOI   ScienceOn
21 Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for Tie2 receptor, during embryonic angiogenesis. Cell 1996;87:1171-1180   DOI   ScienceOn
22 Canalis E, McCarthy T, Centrella M. Growth factors and the regulation of bone remodeling. J Clin Invest 1988;81:277-281   DOI   ScienceOn
23 Yuan HT, Suri C, Yancopoulos GD, Woolf AS. Expression of angiopoietin-1, angiopoietin-2, and the tie2 receptor tyrosine kinase during mouse kidney maturation. J Am Soc Nephrol 1999;10:1722-1736
24 Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55-60   DOI
25 Takahashi N, Yamana H, Yoshiki S, et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinol 1988;122:1373-1382   DOI   ScienceOn
26 Das A, Fanslow W, Cerretti D, Warren E, Talarico N, McGuire P. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest 2003;83:1637-1645   DOI   ScienceOn
27 Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455-463   DOI
28 Asahara T, Chen DH, Takahashi T, et al. Tie-2 receptor ligands, angiopoietin-1 and angiopoietin-2 modulate VEGF-induced postnasal neovasculaisation. Circulation Res 1998;83:233-240   DOI   ScienceOn